Lecture Notes

05PC602 POWER SYSTEM ANALYSIS

VI Sem B.E (E \& E)

Dr. P. Aravindhababu
Dr. L. Lakshminarasimman

Unit-I : Modelling of Power Systems Components

Representation of power system components : Single phase solution of balanced three phase networks - One line diagram - Impedance or reactance diagram - Per unit system - Per unit impedance diagram - Complex power - representation of loads.

Review of symmetrical components - Transformation of voltage, current and impedance (conventional and power invariant transformations) - Phase shift in star- delta transformers - Sequence impedance of transmission lines Sequence impedance and sequence network of power system components (synchronous
machines, loads and transformer banks) - Construction of sequence networks of a power system.

Unit-II : Bus Impedance and Admittance Matrices

Development of network matrix from graph theory - Primitive impedance and admittance matrices - Bus admittance and bus impedance matrices - Properties - Formation of bus admittance matrix by inspection and analytical methods. Bus impedance matrix: Properties - Formation using building algorithm - addition of branch, link - removal of link, radial line - Parameter changes.

Unit-III : Power Flow Analysis

Sparsity - Different methods of storing sparse matrices - Triangular factorization of a sparse matrix and solution using the factors - Optimal ordering - Three typical schemes for optimal ordering - Implementation of the second method of Tinney and Walker. Power flow analysis - Bus classification - Development of power flow model - Power flow problem - Solution using Gauss Seidel method and Newton Raphson method - Application of sparsity based programming in Newton Raphson method - Fast decoupled load flow- comparison of the methods.

Unit-IV : Fault Analysis

Short circuit of a synchronous machine on no load and on load - Algorithm for symmetrical short circuit studies Unsymmetrical fault analysis - Single line to ground fault, line to line fault, double line to ground fault (with and without fault impedances) using sequence bus impedance matrices - Phase shift due to star- delta transformers Current limiting reactors - Fault computations for selection of circuit breakers.

Unit-V : Short Circuit Study Based on Bus Admittance Matrix

Phase and sequence admittance matrix representation for three phase, single line to ground, line to line and double line to ground faults (through fault impedances) - Computation of currents and voltages under faulted condition using phase and sequence fault admittance models - Sparsity based short circuit studies using factors of bus admittance matrix.

Text Books

1) Nagrath, I.J., Kothari. D.P., "Power System Engineering", TMH, New Delhi; 2007.
2) Wadhwa, C.L., "Electric Power Systems", Wiley Eastern, 2007.

Reference Books

1) Pai, M.A., "Computer Techniques in Power System Analysis", TMH, 2007.
2) Stagg and El-Abiad, "Computer Methods in Power System Analysis", McGraw Hill International, Student Edition, 1968.
3) Stevenson, W.D., "Element of Power System Analysis", McGraw Hill, 1975.
4) Ashfaq Husain, "Electrical Power Systems", CBS Publishers \& Distributors, 1992.
5) Haadi Saadat, "Power System Analysis", Tata McGraw Hill Edition, 2002.
6) Gupta, B.R., "Power System Analysis and Design, Third Edition", A.H. Wheeler and Co Ltd., New Delhi, 1998.
7) Singh, L.P., "Advanced Power System Analysis and Dynamics, Fourth Edition, New Age International (P) Limited, Publishers, New Delhi, 2006.

Impertance or Paver hpotem shadies :-

- A paver mptom can be vieved as an interconnectim of Herree main sptems.
(1) Geverater mptem - cmpises syndronoms machuvis, the exciter, the voltage nepulathe, the pormemores with governiny mechanism ete.
(2) Transumsien suptem - corints os traumursin anis, transtamer, probectic relery apponatus, crrenit breakens, stats ceppucitom, shunt reactom, of
(3) Loads - modelled either as voltoge dependent, cument degendent os static impedance.
- Tum, today's parer mptun are veny complex and there are a number os decisions to be taken in a P-1 both at the operatisual and at flamming level.
- Fer exangte, tre lond dispaterer in a perer morm wants to gidge the sprim behavions and atro the effectiven of certain contren shategies in the event of a perticular distubauce. It is obvimsty not feasible to create ruch a distubance on a real spptum; which in tum needs a very heany empharin on modelleriy and simulation techuques is difital cemputens.
- An appropinte simulation can preside the necessang deta to sostent the merits os a pantsulen contrf shategy.
- Somilanty, is the plammiy level, the dessinar can even decide the location os future generation is well as the transmusion netwate cenfigmation wed in advance. 15-10 yean?

The follaniny studses one conied out for efficient densu, operation and centre os the parer mpten.

Functions of power system analysis

- To monitor the voltage at various buses, real and reactive power flow between buses.
- To design the circuit breakers.
- To plan future expansion of the existing system
- To analyze the system under different fault conditions
- To study the ability of the system for small and large disturbances (Stability studies)

COMPONENTS OF A POWER SYSTEM

1. Alternator
2. Power transformer
3. Transmission lines
4. Substation transformer
5. Distribution transformer
6. Loads

SINGLE LINE DIAGRAM

A single line diagram is diagrammatic representation of power system in which the components are represented by their symbols and interconnection between them are shown by a straight line(even-though the system is three phase system).The ratings and the impedance of the components are also marked on the single line diagram.

Purpose of using single line diagram

The purpose of the single line diagram is to supply in concise form of the significant information about the system.

Per unit value.

The per unit value of any quantity is defined as the ratio of the actual value of the any quantity to the base value of the same quantity as a decimal.

Per unit=Actual value / Base value

The components or various sections of power system may operate at different voltage and power levels. It will be convenient for analysis of power system if the voltage, power, current and impedance rating of components of power system are expressed with reference to a common value called base value.

Advantages of per unit system

i. Per unit data representation yields valuable relative magnitude information.
ii. Circuit analysis of systems containing transformers of various transformation ratios is greatly simplified.
iii. The p.u systems are ideal for the computerized analysis and simulation of complex power system problems.
iv. Manufacturers usually specify the impedance values of equivalent in per unit of the equipments rating. If the any data is not available, it is easier to assume its per unit value than its numerical value.
v. The ohmic values of impedances are refereed to secondary is different from the value as referee to primary. However, if base values are selected properly, the p.u impedance is the same on the two sides of the transformer.
vi. The circuit laws are valid in p.u systems, and the power and voltages equations are simplified since the factors of $\sqrt{3}$ and 3 are eliminated.

Change the base impedance from one set of base values to another set

Let
$\mathrm{Z}=$ Actual impedance, Ω
$\mathrm{Z}_{\mathrm{b}}=$ Base impedance, Ω

$$
\begin{equation*}
\text { Per unit impedance of a circuit element }=\frac{Z}{Z_{b}}=\frac{Z}{\frac{(k V b)^{2}}{M V A_{b}}}=\frac{Z \times M V A_{b}}{(k V b)^{2}} \tag{1}
\end{equation*}
$$

The eqn 1 show that the per unit impedance is directly proportional to base megavoltampere and inversely proportional to the square of the base voltage.

Using Eqn 1 we can derive an expression to convert the p.u impedance expressed in one base value (old base) to another base (new base)

Let $k V_{b, o l d}$ andMVA $A_{b, o l d}$ represents old base values and $k V_{b, \text { new }}$ and $M V A_{b, n e w}$ represent new base value
Let $Z_{\text {p.u,old }}=p . u$. impedance of a circuit element calculated on old base
$Z_{\text {p.u,new }}=p . u$ impedance of a circuit element calculated on new base
If old base values are used to compute the p.u.impedance of a circuit element, with impedance Z then eqn 1 can be written as

$$
\begin{gather*}
Z_{p, u, o l d}=\frac{Z \times M V A_{b, o l d}}{\left(k V_{b, o l d}\right)^{2}} \\
Z=Z_{p . u, \text { old }} \frac{\left(k V_{b, o l d}\right)^{2}}{M V A_{b, o l d}} \tag{2}
\end{gather*}
$$

If the new base values are used to compute the p.u. impedance of a circuit element with impedance Z, then eqn 1 can be written as

$$
\begin{equation*}
Z_{p, u, \text { new }}=\frac{Z \times M V A_{b, \text { new }}}{\left(k V_{b, \text { new }}\right)^{2}} \tag{3}
\end{equation*}
$$

On substituting for Z from eqn 2 in eqn 3 we get

$$
\begin{gather*}
Z_{p, u, \text { new }}=Z_{p, \text {.u.old }} \frac{\left(k V_{b, \text { old }}\right)^{2}}{M V A_{b, o l d}} \times \frac{M V A_{b, \text { new }}}{\left(k V_{b, \text { new }}\right)^{2}} \\
Z_{p . \text { u, new }}=Z_{p u, \text { old }} \times\left(\frac{k V_{\text {bold }}}{k V_{b, \text { new }}}\right)^{2} \times\left(\frac{M V A_{b, \text { new }}}{M V A_{b, o l d}}\right) \tag{4}
\end{gather*}
$$

The eqn 4 is used to convert the p.u.impedance expressed on one base value to another base

MODELLING OF GENERATOR AND SYNCHRONOUS MOTOR

1 (1) equivalent circuit of generator

$1(1)$ equivalent circuit of synchronous motor

MODELLING OF TRANSFORMER

$K=\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}=\frac{I_{1}}{I_{2}}$
$R_{01}=R_{1}+R_{2}{ }^{\prime}=R_{1}+\frac{R_{2}}{K^{2}} \quad=$ Equivalentresistance referred to $1 \circ$
$X_{01}=X_{1}+X_{2}{ }^{\prime}=X_{1}+\frac{X_{2}}{K^{2}}=$ Equivalent reactance referred to 1°

MODELLING OF INDUCTION MOTOR

Impedance diagram \& approximations made in impedance diagram

The impedance diagram is the equivalent circuit of power system in which the various components of power system are represented by their approximate or simplified equivalent circuits. The impedance diagram is used for load flow studies. Approximation: (i) The neutral reactances are neglected. (ii) The shunt branches in equivalent circuit of transformers are neglected.

Reactance diagram \& approximations made in reactance diagram

The reactance diagram is the simplified equivalent circuit of power system in which the various components of power system are represented by their reactances. The reactance diagram can be obtained from impedance diagram if all the resistive components are neglected. The reactance diagram is used for fault calculations.

Approximation:
(i) The neutral reactances are neglected.
(ii) The shunt branches in equivalent circuit of transformers are neglected.
(iii) The resistances are neglected.
(iv) All static loads are neglected.
(v) The capacitance of transmission lines are neglected

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGLE LINE DIAGRAM

1. Select a base power $\mathrm{kVA}_{\mathrm{b}}$ or $\mathrm{MVA}_{\mathrm{b}}$
2. Select a base voltage $k V_{b}$
3. The voltage conversion is achieved by means of transformer $\mathrm{kV} \mathrm{V}_{\mathrm{b}}$ on LT section

$$
=\mathrm{k} \mathrm{~V}_{\mathrm{b}} \text { on } \mathrm{HT} \text { section } \mathrm{x} \text { LT voltage rating / HT voltage rating }
$$

4. When specified reactance of a component is in ohms p.u reactance $=$ Actual reactance/Base reactance
specified reactance of a component is in p.u

$$
X_{p . u, \text { new }}=X_{p . u, \text { old }} * \frac{\left(k V_{b, \text { old }}\right)^{2}}{\left(k V_{b, \text { new }}\right)^{2}} * \frac{M V A_{b, \text { new }}}{M V A_{b, o l d}}
$$

EXAMPLE

1. The single line diagram of an unloaded power system is shown in Fig 1.The generator transformer ratings are as follows.
$\mathrm{G} 1=20 \mathrm{MVA}, 11 \mathrm{kV}, \mathrm{X}^{\prime}=25 \%$
G2 $=30$ MVA, $18 \mathrm{kV}, \mathrm{X}^{\prime \prime}=25 \%$
$\mathrm{G} 3=30 \mathrm{MVA}, 20 \mathrm{kV}, \mathrm{X}^{\prime}{ }^{\prime}=21 \%$
$\mathrm{T} 1=25 \mathrm{MVA}, 220 / 13.8 \mathrm{kV}(\Delta / \mathrm{Y}), \mathrm{X}=15 \%$
$\mathrm{T} 2=3$ single phase units each rated $10 \mathrm{MVA}, 127 / 18 \mathrm{kV}(\mathrm{Y} / \Delta), \mathrm{X}=15 \%$
$\mathrm{T} 3=15 \mathrm{MVA}, 220 / 20 \mathrm{kV}(\mathrm{Y} / \Delta), \mathrm{X}=15 \%$
Draw the reactance diagram using a base of 50 MVA and 11 kV on the generator 1 .

Fig 1

SOLUTION

Base megavoltampere,MVAb,new=50 MVA
Base kilovolt kVb , new $=11 \mathrm{kV}$ (generator side)

Reactance of Generator \boldsymbol{G}

$$
\begin{array}{ll}
k V_{b, \text { old }}=11 \mathrm{kV} & k V_{b, \text { new }}=11 \mathrm{kV} \\
M V A_{b, \text { old }}=20 \mathrm{MVA} & M V A_{b, \text { new }}=50 \mathrm{MVA} \\
X_{\text {p.u,old }}=0.25 \mathrm{p} . \mathrm{u} &
\end{array}
$$

$$
\text { The new p.u. reactance of Generator } G=X_{p u, \text { old }} \times\left(\frac{k V_{b, o l d}}{k V_{b, \text { new }}}\right)^{2} \times\left(\frac{M V A_{b, \text { new }}}{M V A_{b, \text { old }}}\right)
$$

side)

$$
=0.25 \times\left(\frac{11}{11}\right)^{2} \times\left(\frac{50}{20}\right)=j 0.625 p . u
$$

Reactance of Transformer T1

$$
\begin{array}{ll}
k V_{b, \text { old }}=11 \mathrm{kV} & k V_{b, \text { new }}=11 \mathrm{kV} \\
M V A_{b, \text { old }}=25 \mathrm{MVA} & M V A_{b, \text { new }}=50 \mathrm{MVA} \\
X_{p . u, \text { old }}=0.15 \mathrm{p} . \mathrm{u} &
\end{array}
$$

The new p.u. reactance of Transformer $T 1=X_{p u, \text { old }} \times\left(\frac{k V_{b, o l d}}{k V_{b, \text { new }}}\right)^{2} \times\left(\frac{M V A_{b, \text { new }}}{M V A_{b, o l d}}\right)$

$$
=0.15 \times\left(\frac{11}{11}\right)^{2} \times\left(\frac{50}{25}\right)=j 0.3 p . u
$$

Reactance of Transmission Line

It is connected to the HT side of the Transformer T1

Base $k V$ on HT side of transformer T $1=$ Base $k V$ on LT side $\times \frac{H T \text { voltage rating }}{L T \text { voltage rating }}$

$$
=11 \times \frac{220}{11}=220 \mathrm{kV}
$$

Actual Impedance $X_{\text {actual }}=100 \mathrm{ohm}$
Base impedance $X_{\text {base }}=\frac{\left(k V_{b, \text { new }}\right)^{2}}{M V A_{b, \text { new }}}=\frac{220^{2}}{50}=968 \mathrm{ohm}$
p.u reactance of 100Ω transmission line $=\frac{\text { Actual Reactance }, \text { ohm }}{\text { Base Reactance }, \text { ohm }}=\frac{100}{968}=j 0.103$ p.u
p.u reactance of 150Ω transmission line $=\frac{\text { Actual Reactance }, \text { ohm }}{\text { Base Reactance }, \text { ohm }}=\frac{150}{968}=j 0.154$ p.u

Reactance of Transformer T2

$$
\begin{array}{lr}
k V_{b, \text { old }}=127 * \sqrt{ } 3 \mathrm{kV}=220 \mathrm{kV} & k V_{b, \text { new }}=220 \mathrm{kV} \\
M V A_{b, \text { old }}=10 * 3=30 \mathrm{MVA} & M V A_{b, \text { new }}=50 \mathrm{MVA} \\
X_{p ., \mathrm{l}, \text { old }}=0.15 \mathrm{p} . \mathrm{u} &
\end{array}
$$

$$
\text { The new p.u. reactance of Transformer } T 2=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, \text { new }}}{M V A_{b, o l d}}\right)
$$

$$
=0.15 \times\left(\frac{220}{220}\right)^{2} \times\left(\frac{50}{30}\right)=j 0.25 \mathrm{p} . u
$$

Reactance of Generator G2

It is connected to the LT side of the Transformer T2
Base $k V$ on $L T$ side of transformer T2 $=$ Base $k V$ on $H T$ side $\times \frac{L T \text { voltage rating }}{H T \text { voltage rating }}$

$$
=220 \times \frac{18}{220}=18 \mathrm{kV}
$$

$k V_{b, o l d}=18 \mathrm{kV}$
$k V_{b, n e w}=18 \mathrm{kV}$
$M V A_{b, o l d}=30 \mathrm{MVA}$
$M V A_{b, \text { new }}=50 \mathrm{MVA}$
$X_{p . u, o l d}=0.25 \mathrm{p} . \mathrm{u}$
The new p.u. reactance of Generator $G 2=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, \text { new }}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$

$$
=0.25 \times\left(\frac{18}{18}\right)^{2} \times\left(\frac{50}{30}\right)=j 0.4167 \text { p.u }
$$

Reactance of Transformer T3

$k V_{b, \text { old }}=20 \mathrm{kV}$	$k V_{b, \text { new }}=20 \mathrm{kV}$
$M V A_{b, \text { old }}=20 \mathrm{MVA}$	$M V A_{b, \text { new }}=50 \mathrm{MVA}$

$X_{\text {p.u,old }}=0.15 p . u$
The new p.u. reactance of Transformer $T 3=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, \text { new }}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$

$$
=0.15 \times\left(\frac{20}{20}\right)^{2} \times\left(\frac{50}{30}\right)=j 0.25 p . u
$$

Reactance of Generator G3

It is connected to the LT side of the Transformer T3
Base $k V$ on $L T$ side of transformer $T 3=B$ ase $k V$ on $H T$ side $\times \frac{L T \text { voltage rating }}{H T \text { voltage rating }}$

$$
=220 \times \frac{20}{220}=20 \mathrm{kV}
$$

$k V_{b, o l d}=20 \mathrm{kV}$	$k V_{b, \text { new }}=20 \mathrm{kV}$
$M V A_{b, o l d}=30 \mathrm{MVA}$	$M V A_{b, \text { new }}=50 \mathrm{MVA}$

$X_{p . u, o l d}=0.21$ p.u

$$
\begin{aligned}
\text { The new p.u. reactance of Generator } G 3 & =X_{p u, o l d} \times\left(\frac{k V_{b . o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right) \\
= & 0.21 \times\left(\frac{20}{20}\right)^{2} \times\left(\frac{50}{30}\right)=j 0.35 \mathrm{p.u}
\end{aligned}
$$

Example

2) Draw the reactance diagram for the power system shown in fig. Use a base of50 MVA, 230 kV in 30Ω line. The ratings of the generator, motor and transformers are

Generator $=20 \mathrm{MVA}, 20 \mathrm{kV}, \mathrm{X}=20 \%$
Motor $=35 \mathrm{MVA}, 13.2 \mathrm{kV}, \mathrm{X}=25 \%$
$\mathrm{T} 1=25 \mathrm{MVA}, 18 / 230 \mathrm{kV}(\mathrm{Y} / \mathrm{Y}), \mathrm{X}=10 \%$
$\mathrm{T} 2=45 \mathrm{MVA}, 230 / 13.8 \mathrm{kV}(\mathrm{Y} / \Delta), \mathrm{X}=15 \%$

Solution

Base megavoltampere,MVAb,new=50 MVA
Base kilovolt kVb,new=230 kV (Transmission line side)

FORMULA

The new p.u. reactance $X_{p u, n e w}=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$
Reactance of Generator G
It is connected to the LT side of the T1 transformer
Base $k V$ on $L T$ side of transformer $T 1=B$ ase $k V$ on $H T$ side $\times \frac{L T \text { voltage rating }}{H T \text { volta ge rating }}$

$$
=230 \times \frac{18}{230}=18 \mathrm{kV}
$$

$$
\begin{array}{ll}
k V_{b, \text { old }}=20 \mathrm{kV} & k V_{b, \text { new }}=18 \mathrm{kV} \\
M V A_{b, \text { old }}=20 \mathrm{MVA} & M V A_{b, \text { new }}=50 \mathrm{MVA}
\end{array}
$$

$X_{p . u, o l d}=0.2 p . u$

$$
\text { The new p.u. reactance of Generator } \begin{aligned}
G & =X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right) \\
& =0.2 \times\left(\frac{20}{18}\right)^{2} \times\left(\frac{50}{20}\right)=j 0.617 \mathrm{p.u}
\end{aligned}
$$

Reactance of Transformer T1

$k V_{b, o l d}=18 \mathrm{kV}$
$k V_{b, \text { new }}=18 \mathrm{kV}$
$M V A_{b, o l d}=25 \mathrm{MVA}$
$M V A_{b, \text { new }}=50 \mathrm{MVA}$
$X_{\text {p.u,old }}=0.1 p . u$
The new p.u. reactance of Transformer $T 1=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$

$$
=0.1 \times\left(\frac{18}{18}\right)^{2} \times\left(\frac{50}{25}\right)=j 0.2 p . u
$$

Reactance of Transmission Line
It is connected to the HT side of the Transformer T1

Actual Impedance $X_{\text {actual }}=j 30$ ohm
Base impedance $X_{\text {base }}=\frac{\left(k V_{b, \text { new }}\right)^{2}}{M V A_{b, \text { new }}}=\frac{230^{2}}{50}=1058 \mathrm{ohm}$
p.u reactance of $j 30 \Omega$ transmission line $=\frac{\text { Actual Reactance }, \text { ohm }}{\text { Base Reactance }, \text { ohm }}=\frac{j 30}{1058}=j 0.028 \mathrm{p} . u$

Reactance of Transformer T2

$k V_{b, o l d}=230 \mathrm{kV} \quad k V_{b, \text { new }}=230 \mathrm{kV}$
$M V A_{b, o l d}=45 \mathrm{MVA}$

$$
M V A_{b, \text { new }}=50 \mathrm{MVA}
$$

$X_{\text {p.u,old }}=0.15 \mathrm{p} . \mathrm{u}$
The new p.u. reactance of Transformer $T 2=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$

$$
=0.15 \times\left(\frac{230}{230}\right)^{2} \times\left(\frac{50}{45}\right)=j 0.166 p . u
$$

Reactance of Motor M2

It is connected to the LT side of the Transformer T2

Base $k V$ on $L T$ side of transformer $T 2=$ Base $k V$ on $H T$ side $\times \frac{L T \text { voltage rating }}{H T \text { voltage rating }}$

$$
=230 \times \frac{13.8}{230}=13.8 \mathrm{kV}
$$

$k V_{b, o l d}=13.2 \mathrm{kV}$

$$
\begin{aligned}
& k V_{b, \text { new }}=13.8 \mathrm{kV} \\
& M V A_{b, \text { new }}=50 \mathrm{MVA}
\end{aligned}
$$

$M V A_{b, o l d}=35 \mathrm{MVA}$
$X_{p . u, o l d}=0.25 p . u$
The new p.u. reactance of Generator G $2=X_{p u, o l d} \times\left(\frac{k V_{b, o l d}}{k V_{b, n e w}}\right)^{2} \times\left(\frac{M V A_{b, n e w}}{M V A_{b, o l d}}\right)$

$$
=0.25 \times\left(\frac{13.2}{13.8}\right)^{2} \times\left(\frac{50}{35}\right)=j 0.326 p . u
$$

i). Draw the reactance diagram using a base of 30 IVA 100 MVA and 22 kV on the generated side. All the impedance including the load impedance are marked in per unit.

Given:

$$
\begin{aligned}
M V A_{B} & =100 \mathrm{MVA} . \\
K V_{B} & =22 \mathrm{KV} .
\end{aligned}
$$

Sol:
The base voltage on the High voltage side of Transformer T_{1} is $22 \times \frac{220}{22}=220 \mathrm{kV}=1$

The base voltage on the low voltage side of Transformer T_{2} is $220 \times \frac{11}{220}=11 \mathrm{KV} .=V_{T_{2}}$

The base voltage on the HV side of T_{3} is $22 \times \frac{110}{22}=110 \mathrm{kV}=V_{T_{3}}$

The bare voltage on the $L V$ side of T_{4} is $110 \times \frac{11}{110}=\| \mathrm{KV} .=V_{T_{4}}$

The generator and transformer per unit reactances on 100 MVAB can be calculated using

$$
\begin{aligned}
\left(Z_{\text {pu }}\right)_{\text {now }} & =\left(Z_{\text {pu }}\right)_{\text {old }} \times \frac{M V A_{B}{ }^{\text {now }}}{M V A_{B}{ }^{\text {old }}} \times\left(\frac{\mathrm{K} V_{8}^{\text {old }}}{K V_{B}^{\text {now }}}\right)^{2} \\
Z_{\text {pu }} G_{1} & =0.18 \times \frac{100}{90} \times\left(\frac{22}{22}\right)^{2} \\
& =0.18 \times 1.11 \times 1 \\
& =0.2 \mathrm{pu} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Zpu } T_{1} & =0.1 \times \frac{100}{50} \times\left(\frac{22}{22}\right)^{2} \\
& =0.1 \times 2 \\
& =0.2 \mathrm{pu} .
\end{aligned}
$$

Zpu $T_{2}=000 \times \frac{100}{40} \times\left(\frac{11}{11}\right)^{2}$

$$
\begin{aligned}
\text { a } & =0.06 \times 2.5 \\
& =0.15 \mathrm{pu} \\
x p u T_{3} & =0.064 \times \frac{100}{40} \times\left(\frac{110}{110}\right)^{2} \\
& =0.064 \times 2.5 \\
& =0.16 \mathrm{pu}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{p u} T_{4}=0.08 \times \frac{100}{40} \times\left(\frac{11}{11}\right)^{2} \\
& =0.08 \times 2.5 \\
& \text { - } 0 \cdot 2 \mathrm{pu} \\
& \text { cpu } M=0.185 \times \frac{100}{66.5} \times\left(\frac{10.45}{11}\right)^{2} \\
& =0.185 \times 1.503 \times(0.95)^{2} \\
& =0.185 \times 1.503 \times 0.9025 \\
& =0.2509 \mathrm{pu} . \\
& \text { per unit a } \frac{\text { Actual }}{\text { wasp }} \\
& Z_{\text {Th }}=48 \frac{48 \cdot 4}{\left[\frac{(220)^{2}}{100}\right]} \\
& =\frac{48.4}{\left(\frac{48400}{100}\right)} \\
& =0.1 \mathrm{pu} \\
& Z_{T L_{2}}=\frac{65 \cdot 4^{3}}{434\left[\frac{(10)^{2}}{100}\right]} \\
& =\frac{65.43}{\left(\frac{12100}{100}\right)}=0.54 p u
\end{aligned}
$$

Load \Rightarrow cpu.

Actual. Flood $=\frac{(\mathrm{kV})^{2}}{M V A}=\frac{(104.5)^{2}}{5715.5 .13}=1.9158$ L53.13
$\cos \theta=0.6$.

$$
\begin{aligned}
\theta & =\cos ^{-1}(0.0) \\
& =53.13^{\circ}
\end{aligned}
$$

pu value $=\frac{z_{A C t}}{z_{\text {Bare }}}$

$$
=\frac{1.9158 \cdot 153 \cdot 13}{(11)^{2} / 100}
$$

$$
=\frac{1.9158153 .13}{1.21}
$$

$$
=1.5833153 .13 .
$$

Innuctane diagram

$$
=0.9499+j 1.26
$$

Obtain the per unit impedance diagram of the power System shown in figure. Assume a base of 30 MVA, 33 kV on the transmission line.

Soln: Bate values of section 1 is 30 MVA and $33 k V$ Bate values of section 2 is 30 MVA and 11 kY Base values of section 3 is 30 MVA and 6.2 kv .

Zpu for $G_{1}=\frac{\text { zact }}{z_{\text {bare }}}+\frac{1.6}{\frac{(11)^{2}}{30}}=\frac{1.6}{4.03}=0.39 \mathrm{pu}$.
zpu for $T_{1}=\frac{z_{\text {act }}}{z_{\text {base }}}=\frac{15 \cdot 2}{\left[\frac{(33)^{2}}{30}\right]}=\frac{15 \cdot 2}{36 \cdot 3}=0.41 \mathrm{pu}$.

Xu for Transmission line $=\frac{20.5}{\left[\frac{(33)^{2}}{30}\right]}=\frac{20.5}{36.3}=0.56 \mathrm{pu}$.

Zpu for $T_{2}=\frac{16}{\left[\frac{(33)^{2}}{30}\right]}=\frac{16}{36.3}=0.44 \mathrm{pu}$.
Xu for $G_{2}=\frac{1.2}{\left[\frac{(b .2)^{2}}{30}\right]}-\frac{1.2}{1.28}=0.93 \mathrm{pu}$.
cpu for $G_{3}=\frac{0.56}{\left[\frac{(6.2)^{2}}{30}\right]}=\frac{0.56}{1.28}=0.43 \mathrm{pu}$

$$
\begin{aligned}
\text { Load impodance }=\frac{(\mathrm{KV})^{2}}{M V A} & =\frac{(11)^{2}}{40\left(-\cos ^{-1}(0.9)\right.} \\
& =\frac{121}{40(-25.8} \\
& =3.02\lfloor 25.8 \mathrm{I} .
\end{aligned}
$$

$$
\begin{aligned}
\text { zpu of } \operatorname{Load} A=\frac{3.02}{\left[\frac{(11)^{2}}{30}\right]} & =\frac{3.02[258}{4.03} \\
& =0.74125 .8 \\
& =0.66+0.32 \mathrm{j} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Zad of Load } B & =\frac{(b .6)^{2}}{40 L-\cos ^{-1}(0.85)} \\
& =\frac{43.56}{40 \underline{-31.7}}=1.08 L 31.7
\end{aligned}
$$

Zpu of $\operatorname{Lood} B=\frac{1.08[3)^{2} 7}{\left[\frac{(6.2)^{2}}{30}\right]}=\frac{1.08(3) .7}{1.28}$

$$
\begin{aligned}
& =0.84\lfloor 31.7 \\
& =0.71+j 0.44
\end{aligned}
$$

Representation
$=$

Complex power. $S=P+j Q=V I^{*}$

* Constant Power $\left.\Rightarrow \begin{array}{rl}\text { Real } \Rightarrow M W \\ & \text { Reactive } \Rightarrow \text { MVAR }\end{array}\right\}$ Lower frequency.
$\begin{aligned} & \text { * Constant current } \\ & \text { (for short circuit current) }\end{aligned} \Rightarrow I=\frac{P-j Q}{Y^{*}}$
constant impedance $\Rightarrow z=\frac{V}{I}=\frac{V \cdot v^{*}}{P-j Q}=\frac{|v|^{2}}{P-j Q}$.

Symmetrical Components

An unbalanced system of N related vectors can be resolved into N systems of balanced vectors. The $\mathrm{N}-$ sets of balanced vectors are called symmetrical components. Each set consists of $\mathrm{N}-$ vectors which are equal in length and having equal phase angles between adjacent vectors.

Sequence Impedance and Sequence Network

The sequence impedances are impedances offered by the devices or components for the like sequence component of the current. The single phase equivalent circuit of a power system consisting of impedances to the current of any one sequence only is called sequence network.

Positive Sequence Components

The positive sequence components are equal in magnitude and displayed from each other by 120 o with the same sequence as the original phases. The positive sequence currents and voltages follow the same cycle order of the original source. In the case of typical counter clockwise rotation electrical system, the positive sequence phasor are shown in Fig. The same case applies for the positive current phasors. This sequence is also called the "abc" sequence and usually denoted by the symbol "+" or " 1 "

Negative Sequence Components

This sequence has components that are also equal in magnitude and displayed from each other by 120 o similar to the positive sequence components. However, it has an opposite phase sequence from the original system. The negative sequence is identified as the "acb" sequence and usually denoted by the symbol "-" or " 2 " [9].The phasors of this sequence are shown in Fig where the phasors rotate anti- clockwise. This sequence occurs only in case of an unsymmetrical fault in addition to the positive sequence components,

Zero Sequence Components

In this sequence, its components consist of three phasors which are equal in magnitude as before but with a zero displacement. The phasor components are in phase with each other. This is illustrated in Fig. Under an asymmetrical fault condition, this sequence symbolizes the residual electricity in the system in terms of voltages and currents where a ground or a fourth wire exists. It happens when ground currents return to the power system through any grounding point in the electrical system. In this type of faults, the positive and the negative components are also present. This sequence is known by the symbol " 0 ".

Symmetrical components:
vorticy mane positive saquance. $\Rightarrow 1$
no hour A Negative Sequence $\$ 2 \Rightarrow$ aider
no taite क Zro sequence $\Rightarrow 0$ equal in magioted and angle nquo in magrutub ay ango but oppoito dions
$\xrightarrow[\longrightarrow]{\downarrow \rightarrow c}$
unbalaneed comporent : Sum of all balaneol sequence component.

$$
\text { ie, } \begin{aligned}
\vec{V}_{a} & =\vec{V}_{a_{0}}+\vec{V}_{a_{1}}+\vec{V}_{c_{2}} \\
\vec{V}_{b} & =\vec{V}_{b_{0}}+\vec{V}_{b_{1}}+\vec{V}_{b_{2}} . \\
\vec{V}_{c} & =\vec{V}_{c_{0}}+\vec{V}_{c_{7}}+\vec{V}_{c_{2}} .
\end{aligned}
$$

Vecter operator :

$$
\begin{aligned}
& a=1 \left\lvert\, 120^{\circ}=\begin{array}{c}
\text { shifts angle } 120^{\circ} \text { by }=-0.5+j 0.8666 \\
\text { counter clockioise }
\end{array}\right. \\
& \begin{aligned}
& 1+y=2 L^{-S}=2 \\
& a^{2}=1240^{\circ}=-0.5-j 0.866
\end{aligned} \\
& a^{3}=1 \text { 1666 } 0^{\circ}=1 \text {. } \\
& \frac{1+a+a^{2}}{x}=0 \\
& \text { Tray(us) thatarno }
\end{aligned}
$$ (Tinano trivto trula ni)

If we take x_{a} as reference, we get

$$
\Rightarrow \quad \begin{aligned}
\vec{V}_{b} & =\vec{V}_{a D}+a^{2} V_{a_{1}}+a^{2} \vec{V}_{a_{2}} \\
\hat{V}_{c} & =\vec{V}_{a D}+a \vec{V}_{a_{1}}+a^{2} \vec{V}_{a_{2}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a_{1}} \\
V_{a_{2}}
\end{array}\right]} \\
& \Rightarrow\left[V_{\text {ph }}\right]=[A]\left[V_{\text {sea }}\right]-\text { (1) } \\
& \therefore\left[V_{\text {seq }}\right]=[A]^{-1}\left[V_{p h}\right], \text { (2) }
\end{aligned}
$$

$$
\text { Henc, }\left[A^{-1}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{n} & a^{2} \\
1 & a^{2} & a^{2}
\end{array}\right]
$$

Now (2) botomes.

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{a p} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{4} & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]} \\
& V_{a 0}=\frac{1}{3}\left[V_{a}+V_{b}+V_{c}\right] \\
& V_{a}=\frac{1}{3}\left[V_{a}+a V_{b}+a^{2} V_{c}\right] \\
& V_{a_{1}}= \\
& V_{a 2}=\frac{1}{3}\left[V_{a}+a^{2} V_{b}+a V_{c}\right] . \\
& \|_{I I}^{I I} I_{\text {ph }}=A I_{\text {req }} . \\
& I_{\text {req }}=A^{-1} I_{\text {ph }} .
\end{aligned}
$$

power Invarient :

$$
\begin{align*}
& S=\left[\gamma_{p h}\right]^{\top}\left[I_{p h}\right]^{*} \\
& =\left[\begin{array}{ll}
A & V_{\text {seq }}
\end{array}\right]^{\top}\left[\begin{array}{lll}
A & J_{\text {seq }}
\end{array}\right]^{*} \\
& \therefore S=V_{\text {seq }}{ }^{\top} A^{\top} \text {. } A^{*} I_{\text {seq }}{ }^{*} \\
& A^{\top} A^{*}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right] \\
& =\left[\begin{array}{lll}
1+1+1 & 1+a+a^{2} & 1+a^{2}+a \\
1+a^{2}+a & 1+a^{3}+a^{3} & 1+a^{4}+a^{2} \\
1+a+a^{2} & 1+a^{2}+a^{4} & 1+a^{3}+a^{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]=3[0] . \\
& \text { Now, (3) } \left.\Rightarrow S=V_{\mathrm{seq}} \cdot \mathrm{~S} \cdot \mathrm{SU}\right] I_{\mathrm{beq}}{ }^{*} \text { and } \\
& \therefore S=3 V_{\text {yea }}{ }^{\top} I_{\text {bean }}
\end{align*}
$$

EXAMPLE

1. The symmetrical components of a phase -a voltage in a 3-phase unbalanced system are $V_{a 0}=10 \angle 180^{\circ} \mathrm{V}, V_{a 1}=50 \angle 0^{\circ} \mathrm{V}$ and $V_{a 2}=20 \angle 90^{\circ} \mathrm{V}$.
Determine the phase voltages Va, Vb and Vc
The phase voltages of V_{a}, V_{b} and V_{c}

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]} \\
& V_{a}=V_{a 0}+V_{a 1}+V_{a 2} \\
& V_{b}=V_{a 0}+a^{2} V_{a 1}+a V_{a 2} \\
& V_{c}=V_{a 0}+a V_{a 1}+a^{2} V_{a 2}
\end{aligned}
$$

$$
\begin{gathered}
V_{a 0}=10 \angle 180^{\circ}=-10+j 0 \quad \mathrm{~V} \\
V_{a 1}=50 \angle 0^{\circ}=50+j 0 \quad \mathrm{~V} \\
V_{a 2}=20 \angle 90^{\circ}=0+j 20 \mathrm{~V} \\
\mathrm{a}=1 \angle 120^{\circ} \quad a^{2}=1 \angle 240^{\circ} \\
a^{2} V_{a 1}=1 \angle 240^{\circ} \times 50 \angle 0^{\circ}=50 \angle 240^{\circ}=-25-\mathrm{j} 43.30 \\
a V_{a 1}=1 \angle 120^{\circ} \times 50 \angle 0^{\circ}=50 \angle 120^{\circ}=-25+\mathrm{j} 43.30 \\
a^{2} V_{a 2}=1 \angle 240^{\circ} \times 20 \angle 90^{\circ}=20 \angle 233=17.32-\mathrm{j} 10 \\
a V_{a 2}=1 \angle 120^{\circ} \times 20 \angle 90^{\circ}=20 \angle 210^{\circ}=-17.32-\mathrm{j} 10
\end{gathered}
$$

$$
V_{a}=V_{a 0}+V_{a 1}+V_{a 2}=(-10+j 0)+(50+j 0)+(0+j 20)=40+j 20=44.72 \angle 27^{\circ} V
$$

$$
V_{b}=V_{a 0}+a^{2} V_{a 1}+a V_{a 2}=(-10+j 0)+(-25-\mathrm{j} 43.30)+(-17.32-\mathrm{j} 10)=-52.32-j 53.90
$$

$$
=74.69 \angle-134^{\circ} \mathrm{V}
$$

$$
V_{c}=V_{a 0}+a V_{a 1}+a^{2} V_{a 2}=(-25-\mathrm{j} 43.30)+(-25+\mathrm{j} 43.30)+17.32-\mathrm{j} 10=-17.68+\mathrm{j} 33.3
$$

$$
=37.70 \angle-118^{\circ} \mathrm{V}
$$

THREE-SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

Positive sequence currents give rise to only positive sequence voltages, the negative sequence currents give rise to only negative sequence voltages and zero sequence currents give rise to only zero sequence voltages, hence each network can be regarded as flowing within in its own network through impedances of its own sequence only.

In any part of the circuit, the voltage drop caused by current of a certain sequence depends on the impedance of that part of the circuit to current of that sequence.

The impedance of any section of a balanced network to current of one sequence may be different from impedance to current of another sequence.

The impedance of a circuit when positive sequence currents are flowing is called impedance, When only negative sequence currents are flowing the impedance is termed as negative sequence impedance. With only zero sequence currents flowing the impedance is termed as zero sequence impedance.

The analysis of unsymmetrical faults in power systems is carried out by finding the symmetrical components of the unbalanced currents.

Since each sequence current causes a voltage drop of that sequence only, each sequence current can be considered to flow in an independent network composed of impedances to current of that sequence only.

The single phase equivalent circuit composed of the impedances to current of any one sequence only is
called the sequence network of that particular sequence. The sequence networks contain the generated emfs and impedances of like sequence. Therefore for every power system we can form three- sequence network s. These sequence networks, carrying current Ia1, Ia2 and Ia0 are then inter-connected to represent the different fault conditions.

SEQUENCE NETWORKS OF SYNCHRONOUS MACHINES

An unloaded synchronous machine having its neutral earthed through impedance, Zn , is shown in fig. below. A fault at its terminals causes currents Ia, Ib and Ic to flow in the lines. If fault involves earth, a current In flows into the neutral from the earth. This current flows through the
neutral impedance Zn . Thus depending on the type of fault, one or more of the line currents may be zero. Thus depending on the type of fault, one or more of the line currents may be zero.

POSITIVE SEQUENCE NETWORK

The generated voltages of a synchronous machine are of positive sequence only since the windings of a synchronous machine are symmetrical.

The positive sequence network consists of an emf equal to no load terminal voltages and is in series with the positive sequence impedance Z 1 of the machine. Fig. 2 (b) and fig.2(c) shows the paths for positive sequence currents and positive sequence network respectively on a single phase basis in the synchronous machine.

The neutral impedance Zn does not appear in the circuit because the phasor sum of $\mathrm{Ia}_{1}, \mathrm{Ib}_{1}$ and ${ }_{\mathrm{Ic} 1}$ is zero and no positive sequence current can flow through Zn . Since its a balanced circuit, the positive sequence N The reference bus for the positive sequence network is the neutral of the generator. The positive sequence impedance Z_{1} consists of winding resistance and direct axis reactance. The reactance is the sub-transient reactance X "d or transient reactance X 'd or synchronous reactance Xd depending on whether sub-transient, transient or steady state conditions are being studied. From fig. 2 (b),
the positive sequence voltage of terminal a with respect to the reference bus is given by:
$\mathrm{Va}_{1}=\mathrm{Ea}-\mathrm{Z}_{1} \mathrm{Ia}_{1}$

NEGATIVE SEQUENCE NETWORK

A synchronous machine does not generate any negative sequence voltage. The flow of negative sequence currents in the stator windings creates an mmf which rotates at synchronous speed in a direction opposite to the direction of rotor, i.e., at twice the synchronous speed with respect to rotor.

Thus the negative sequence mmf alternates past the direct and quadrature axis and sets up a varying armature reaction effect. Thus, the negative sequence reactance is taken as the average of direct axis and quadrature axis sub-transient reactance, i.e.,
$\mathrm{X}_{2}=0.5\left(\mathrm{X}{ }^{\prime} \mathrm{d}+\mathrm{X} " \mathrm{q}\right)$.
It not necessary to consider any time variation of X2 during transient conditions because there is no normal constant armature reaction to be effected. For more accurate calculations, the negative sequence resistance should be considered to account for power dissipated in the rotor poles or damper winding by double supply frequency induced currents. The fig.below shows the negative sequence currents paths and the negative sequence network respectively on a single phase basis of a synchronous machine. The reference bus for the negative sequence network is the neutral of the machine.

Thus, the negative sequence voltage of terminal a with respect to the reference bus is given by:
$\mathrm{Va}_{2}=-\mathrm{Z}_{2} \mathrm{Ia}_{2}$

ZERO SEQUENCE NETWORK

No zero sequence voltage is induced in a synchronous machine. The flow of zero sequence currents in the stator windings produces three mmf which are in time phase. If each phase winding produced a sinusoidal space mmf , then with the rotor removed, the flux at a point on the axis of the stator due to zero sequence current would be zero at every instant.

When the flux in the air gap or the leakage flux around slots or end connections is considered, no point in these regions is equidistant from all the three -phase windings of the stator.

The mmf produced by a phase winding departs from a sine wave, by amounts which depend upon the arrangement of the winding.

3.9 Sequence Impedances of Transmission Lines

Consider a transmission system where the self impedance of each phase be repraes by X_{s} and the mutual impedance between any of the two phases be represented by X_{0}

Fies 214 A trataminuiten vyubem.
Let

$$
V_{e s}^{c} \rightarrow \text { Voluage in phase } a \rightarrow V_{e}
$$

$$
\begin{aligned}
& V_{b b}^{\prime} \rightarrow \text { Voltage in phase } b \rightarrow V_{b} \\
& V_{c c}^{\prime} \rightarrow \text { Voltage in phase } c \rightarrow V_{c}
\end{aligned}
$$

If I_{a}, I_{b} and I_{c} represent the phase currents, then

$$
\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=j\left[\begin{array}{lll}
X_{s} & X_{m} & X_{m} \\
X_{m} & X_{s} & X_{m} \\
X_{m} & X_{m} & X_{s}
\end{array}\right]\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]
$$

This is of the form

$$
V^{a b c}=Z^{a b c} I^{a b c}
$$

Converting it to symmetrical components, we get

$$
\begin{aligned}
V^{012} & =A^{-1} Z^{a b c} A I^{012} \\
A^{-1} Z_{a b c} A & =A^{-1} j\left[\begin{array}{lll}
X_{s} & X_{m} & X_{m} \\
X_{m} & X_{s} & X_{m} \\
X_{m} & X_{m} & X_{s}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right] \\
& =j \frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{lll}
X_{s}+2 X_{m} & X_{s}+a^{2} X_{m}+a X_{m} & X_{s}+a X_{m}+a^{2} X_{m} \\
X_{s}+2 X_{m} & X_{m}+a^{2} X_{s}+a X_{m} & X_{m}+a X_{s}+a^{2} X_{m} \\
X_{s}+2 X_{m} & X_{m}+a^{2} X_{m}+a X_{s} & X_{m}+a X_{m}+a^{2} X_{s}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
j\left(X_{s}+2 X_{m}\right) & 0 & 0 \\
0 & j\left(X_{s}-X_{m}\right) & 0 \\
0 & 0 & j\left(X_{s}-X_{m}\right)
\end{array}\right] \\
{\left[\begin{array}{c}
V_{a 0} \\
V_{a 1} \\
V_{a 1}
\end{array}\right] } & =j\left[\begin{array}{ccc}
X_{s}+2 X_{m} & 0 & 0 \\
0 & X_{s}-X_{m} & 0 \\
0 & 0 & X_{s}-X_{m}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]
\end{aligned}
$$

We conclude that for a transmission line

1. Positive and negative sequence impedances are equal.
2. Zero sequence impedance is approximately 2.5 times that of positive or negative sequence impedance in the case of single circuit lines. For double circuit lines, the order will be more.
In all our power system problems while drawing sequence networks, we assume all he three sequence impedances of a transmission line as equal to the leakage impedance
unless specifically mentioned.

Fig. 3.15 Positive, Negative and Zero sequence networks of Transmission lines.

3.10 Sequence Network of Transformer

The positive and negative sequence network of a three phase transformer is as per our usual representation by leakage impedances.

$$
Z_{1}=Z_{2}=Z_{\text {leakage }} .
$$

As we know that the neutral current is composed of zero sequence component current, for the zero sequence current to flow from the primary to secondary, definitely a path should exist from the primary neutral to the secondary neutral. Hence the zero sequence impedance offered by the transformer depends upon how the neutral of the primary and secondary winding are connected. The zero sequence networks of $3-\phi$ transformers for various possible connections in primary and secondary are tabulated in the form of a table as shown.

From the figures, we can say that only when a definite neutral connection exists on both the primary and secondary windings, zero sequence impedance will come into picture. Otherwise the value of zero sequence impedance offered by the transformer is infinity.

Zero Sequence Equivalent Circuits of Three-Phase Transformers

SYMBOLS	CONNECTI	DIAGRAMS	ZERO SEQUENCE EQUIVALENT CIRCUITS
$\begin{gathered} \left.\frac{P}{-} \xi\right\} \\ \frac{H}{Y} Y \end{gathered}$			
$\begin{aligned} & P\} \xi Q \\ & {\underset{\sim}{T}}^{T} D \end{aligned}$			
$\begin{gathered} P\} \xi Q \\ Y \& \end{gathered}$			\qquad Reference bus
$\begin{gathered} P\} \xi Q \\ \Delta \Delta \end{gathered}$			

23. Draw the zero sequence network of the sample power system.

Zero sequence network

24. Draw the zero sequence network of the sample power system.

Zero sequence network

5. A $25 \mathrm{MVA}, 11 \mathrm{kV}, 3-\phi$ generator has a subtransient reactance of 20%. The gener ator supplies two motors over a transmission line with tance or 20%. The gener10 kV with 25% subtram. The motors have rated inputs of 15 and 7.5 MVA both $10.8 / 121 \mathrm{kV} \triangle-Y$ connectiont reactances. Transformers are both rated 30 MVA is 100Ω. Draw + ve and -ve with reactance of 10%. Leakage reactance of line marked in p.u. Assume negat sequence networks of the system with reactances gative sequence reactance of each machine is equal toits

subransient reactance. Draw the zero sequence network of the system assuming zero sequence reactances of generator and motor as 0.06 p.u. Current limiting reactors of 2.5Ω each are connected in the neutral of generator and motor no. 2 . The zero sequence reactance of transmission is 100Ω.

Solution:
Let the generator ratings be chosen as the base values.
Bise MVA 25
Base kV
Generator circuit - 11 kV
Transmission line -123.24 kV
Motor circuit - 11 kV

Positive and negative sequence networks

Since the generator rating is chosen as the base values, $X_{8}=j 0.2$.
Transformer 1

$$
\text { p.u reactance }=0.1 \times\left(\frac{10.8}{11}\right)^{2} \times \frac{25}{30}=j 0.0805
$$

Transmission line

$$
\begin{aligned}
\text { Actual reactance } & =j 100 \text { ohms } \\
\text { Base impedance } & =\frac{(123.24)^{2}}{25}=607 \text { ohms } \\
\text { p.u. reactance } & =\frac{\text { Actual reactance }}{\text { Base impedance }}=j 0.1647
\end{aligned}
$$

Transformer 2
p.u. reactance $=j 0.0805$ p.u.

Motors
p.u reactance of motor $1=j 0.25 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{15}=j 0.345$
p.u reactance of motor $2=j 0.25 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{7.5}=j 0.69$

Positive sequence network

Negative sequence network

Zero sequence network calculations Generator

$$
\text { p.u reactance }=0.06 \times\left(\frac{11}{11}\right)^{2} \times\left(\frac{25}{25}\right)=0.06 \text { p.u. }
$$

Motors

$$
\begin{aligned}
& \text { p.u reactance of motot } 1=0.06 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{15}=j 0.083 \\
& \text { p.u reactance of motot } 2=0.06 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{7.5}=j 0.1652
\end{aligned}
$$

Neutral Reactance Generator

$$
\begin{aligned}
\text { Base impedance } & =\frac{11^{2}}{25}=4.84 \mathrm{ohms} \\
Z_{\mathrm{n} \text { p.u }} & =\frac{j 2.5}{4.84}=j 0.5165 \\
3 Z_{n} & =j 1.5495 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Motor

$$
\begin{aligned}
\text { Base impedance } & =\frac{11^{2}}{25}=4.84 \mathrm{ohms} \\
\text { p.u. reactance } & =\frac{j 2.5}{4.84}=j .5165 \\
3 Z_{n} & =j 1.5495 \mathrm{p.u}
\end{aligned}
$$

Zero sequence network is drawn as follows.

UNIT-II Graph Theory

3.2 ORIENTED GRAPHS

In the electric transmission network, we are concerned with the interconnection of transmission lines, transformers and shunt reactors/capacitors that can be
modeled in terms of two terminal passive components called elements in discussed in Chapter 2. The points of interconnection are called buses, The graph of a network represents the manner in which the passive elemenes and the buses are interconnected, Each of the edges will represent the interconne, by a line segment call the network. In the resulting graph, we will call the buses as nodes.

Figure 3.1 (a) shows a nethe five nodes are numbered in parentheses, A shown in Fig. $3.1(\mathrm{~b})$ where with each edge of the graph in which case it is direction may be called an oriented or directed graph [Fig, 3.1(c)]. The directions are assigned consistent with the concept of associated reference directions for a two terminal passive element in circuit theory.

(a)

(b)

(5)
(c)

Jigen 1 A network and its oriented graph.

3.2.1 Associated Reference Direction

Consider the element in Fig. 3.2(a) which may be a passive element, current or a voltage source. The associated reference directions are such that a positive current enters the + terminal of the voltage reference and leaves at the -terminal of the voltage reference. The oriented graph is shown in Fig. 3.2(b). If the element is purely passive and v and i are the phasors, then $v \equiv z i$ where z is the complex impedance of the element. The reference direction in the oriented graph is chosen to agree with the current direction [Fig. 3.2(b)]. If the element is a current source, then the positive orientation of the current source is chosen to agree with the reference direction in the graph (Fig, 3.3), Note that Terminal (1) has the + sign and Terminal (2) the - sign for the voltage across current source.

(a)

(b)

Fig. 3.2 Associated reference direction.

Fig.3.3 Current source and its oriented graph.
If the element is a voltage source, the orientation in the graph is chosen so that the arrow in the graph goes from the positive to the negative terminal of the voltage reference. The current, unlike in conventional circuit analysis, goes from + to $=$ terminal (Fig, 3.4). Thus, while for the passive element the orientation of the graph is consistent with associated reference directions of circuit theory, for the current and voltage source it is not. If the element is purely passive, then Figs. 3.5 (a) and (b) describe the convention with $v=z i$ or $i=y v$.

Fig. 3.4 Voltage source and its oriented graph.

(a)

(b)

Fig.3.5 Generalized circuit element and its oriented graph.

3.3 PRIMITIVE IMPEDANCE AND ADMITTANCE MATRICES

onsider a network of interconnected components. The passive components lay be mutually coupled. The primitive impedance and admittance representions are $v=z i$ where v and i are vectors, z is the impedance matrix with y ; the inverse of z. The diagonal elements of z are self-impedances and the if-diagonal elements are mutual impedances. If the i and j elements are utually coupled, then the corresponding $(i-j)$ and $(j-i)$ elements are nonzero.
Example 3.1 Consider a four terminal network (e.g. three phases of a nerator which are mutually coupled) shown in Fig. 3.6 with all unequal utual impedances. For the passive network, the terminal relations are:

$$
\begin{gather*}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\frac{\left[\begin{array}{lll}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & z_{33}
\end{array}\right]}{v=z i}\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]} \tag{3,1}\\
v=z i \tag{3.2}
\end{gather*}
$$

(b)

Fig. 3.6 (a) A three-phase network and its oriented graph. (b) Modified network

Suppose an identical voltage source e_{0} is introduced between the node (0) and the common terminal with the polarity shown in Fig. 3.6(a), then it is equivalent to moving the voltage source in series with all the three coils [Fig. 3.6(b)]. The graph will remain the same with each edge of the graph representing the Thevenin source. The terminal relations are now

$$
v=z i+\left[\begin{array}{l}
1 \tag{3.3}\\
1 \\
1
\end{array}\right] e_{0}
$$

The admittance formulations for Eqs (3.2) and (3.3) are, respectively,

$$
\begin{equation*}
i=y v \tag{3.4}
\end{equation*}
$$

$$
i=y v-y\left[\begin{array}{l}
1 \tag{3.5}\\
1 \\
1
\end{array}\right] e_{0}
$$

3.4 SYSTEM GRAPH FOR TRANSMISSION NETWORK

A power system is generally analyzed on a per-phase basis with balanced three-phase loads. Hence, only the positive sequence network is considered. The impedances in the per-phase equivalent are known as the positive sequence impedances. The calculation of these positive sequence impedances for a transmission line (both series impedance and shunt admittance) can be found in the standard texts as a first course in power

Fig. 3.7 Graph of a network. system analysis. Topologically the positive sequence network is the same as the original single-line diagram of the network. Consider the graph of a certain passive network shown in Fig. 3.7.
The primitive impedance $v-i$ relationship is given by

$$
\left[\begin{array}{l}
v_{1} \tag{3.6}\\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
z_{11} & 0 & 0 & 0 & 0 \\
0 & z_{22} & 0 & 0 & 0 \\
0 & 0 & z_{33} & 0 & 0 \\
0 & 0 & 0 & z_{44} & 0 \\
0 & 0 & 0 & 0 & z_{55}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right]
$$

The primitive admittance $i-v$ relationship is $\boldsymbol{i}=\boldsymbol{y} v$ where $\boldsymbol{y}=z^{-1}$

$$
\boldsymbol{y}=\left[\begin{array}{ccccc}
z_{11}^{-1} & 0 & 0 & 0 & 0 \tag{3.7}\\
0 & z_{22}^{-1} & 0 & 0 & 0 \\
0 & 0 & z_{33}^{-1} & 0 & 0 \\
0 & 0 & 0 & z_{44}^{-1} & 0 \\
0 & 0 & 0 & 0 & z_{55}^{-1}
\end{array}\right]
$$

3.5 RELEVANT CONCEPTS IN GRAPH THEORY

Graph theory is a vast mathematical discipline with applications in various engineering fields. We need only a few basic concepts for our work in power systems.

A graph consisting of finite edges and nodes is called a finite graph. It is said to be connected if there exists a path between any two nodes of the graph. A subset of edges of the graph is called a subgraph. Certain degenerate
 subgraphs. A few subgraphs

(b)

(c)
(a)

Fig. 3. 8 Some subgraphs of the graph in Fig. 3.7.
The number of edges incident at a node gives the degree of the node. Fig. 3.7 the degree of node (2) is 3 . A subgraph with two endpoints (whil are the nodes) and all other nodes of degree two in the subgraph is called path. A path can traverse an edge at most once. For example, for Fig. 3.7 subgraphs shown in Fig. 3.9 form the paths between nodes (1) and (4). T direction of the path that is arbitrarily drawn for each path is independent the orientation of its edges. In some paths, it may coincide with the orientati of some edges and in some it may be opposite to some of the edges.

(1)

(3)

Fig. 3.9 Some paths of the graph in Fig. 3.7.

3.5.1 Loop

A loop (circuit) is a connected subgraph with the degree of each of the nod in the sub-graph equal to two. The number of nodes and edges in a loop: equal. A loop is also referred to as a closed path. For Fig. 3.1(c), some of t loops are $(1,2,4,3),(3,5,6),(6,8),(1,2,7,5,3)$, etc. (shown in Fig. 3.1. A loop may also have an orientation that points away from one node ?

> finally goes back towards the same node along the elements of the loop. For the graph in Fig. 3.7 two of the loops are shown in Figs 3.11 (a) and (b) along with their orientation. Fig. 3.11 (c) is not a loop since the degree of node (2) in that subgraph is three.

(1)

(5)

Fig. 3.10 Loops for the graph in Fig. 3.1(c).

Fig. 3.11 Illustration of loops and subgraphs that are not loops.

3.5.2 Tree and Co-tree

One of the important concepts in a linear graph is that of a tree. A tree is a subgraph that is connected, contains all nodes and has no loops. For example in Fig. 3.1(c), a tree can be formed by the elements $(2,5,6,7)$ or $(2,3,4,9)$. A few trees for Fig. 3.7 are shown in Fig. 3.12. In a tree, there is exactly one path between any two nodes. If the number of nodes in a graph is n, there are exactly $(n-1)$ edges in a tree. The proof of this observation is obvious. The elements of the tree are called tree branches.

(a)

(b)

(c)

Fig. 3.12 Trees for the graph in Fig. 3.7.
Those edges of the graph that are not in a tree form a co-tree and the edges of the co-tree are called links or chords. We use the term inks. For each chosen tree, there is a co-tree. For the three trees co-tree does not the corresponding co-trees are shown in Fig. 3.13. Figs 3.13(a) and (b) in general contain all nodes of the graph as illustrated in Megraphs [Fig. 3.13(c)] co-tree may be connected or it may consist of several subge the corresponding Figure 3.14 shows another example of a graph, a tree then the number of links co-tree. If the total number of edges in a graph is e, then the

$$
\ell=e-(n-1)=e-n+1
$$

(a)

(3)
(b)

(c)

Fig. 3.13 Co-trees of the trees in Fig. 3.12.

Fig. 3.14 (a) a graph (b) a tree (c) the corresponding co-tree

3.5.3 Fundamental Loop

A fundamental loop for a graph is formed from the tree of the graph by inserting an appropriate link. For each link inserted, we create a new fundamental loop in the tree. There will be in all $(e-n+1)$ fundamental loops for a chosen tree, all of these being linearly independent. These are linearly independent because each fundamental loop contains a new link. For the graph of Fig. 3.1(c) repeated in Fig. 3.15(a), let the chosen tree be (1, 4, 8,9) as shown in Fig. 3.15(b) (solid lines).

By inserting the links 2,3,5,6,7 (dotted lines) one at a time, the following $e-n+1=9-5+1=5$ fundamental loops are generated. (The links are underlined.)

$$
(1, \underline{2}, 4,9,8),(\underline{3}, 4,9,8),(5,9,4),(\underline{6}, 8),(2,7)
$$

Fig. 3.15 Groph, tree (solid) and the links (dotted).

3.5.4 Kirchhoff's Voltage Law and the Fundamental Loop Matrix

We now state an important topological property of a graph, namely the Fundamental Loop Marrix through the application of Kirchhoff's voltage law (KVL). It states that for any closed path or loop, the algebraic sum of volages around the loop is zero. We write KVL systematically for the fundamental loops as follows;
(i) Select a tree.
(ii) For each fundamental loop assign a positive reference direction to agree with the orientation associated with the link for that loop.
(iii) Going around the loop along the reference direction, assign a + sign to the voltage of the edge if the orientation of the edge agrees with the reference direction, $a=s i g n$ if it is opposite, and a zero if the edge is not contained in that loop.
(iv) Repeat Step (iii) for all the fundamental loops.
(v) Arrange the voltage vector such that the tree-branch voltages appear first and the link voltages afterwards.
(vi) The resulting matrix of $+1,-1$ and 0 entries is called the Fundamental Loop Matrix.
Exnmple 3.2 Consider the graph of Fig. 3.16(a) and the tree (1, 3, 4) in Fig, 3,16(b). The fundamental loops obtained by inserting links 2 and 5

(4)

(4)
(b)

(4)
(c)

(4)
(d)

Pig. 9.16 (a) graph, (b) tree, (c) and (d) fundamental loops.
are shown in Iigs in (e) and (d). The posifive reference direcimin for ench fundamental lomp is shown whith dotted lines to cotnctde with that of the delining link for that lomp. Thus, the KVI for the lwo kops aremiten as $y_{2}-y_{1}+y_{4}=0$
$y_{1}+y_{1}+0$
(186)
$y_{1}+y_{1}+y_{4}=0$ of tree branches and links as
The voliage vector is defined in the order of
|Y, $\mathrm{Y}_{3} \mathrm{~V}_{4}: \mathrm{Y}_{2} \mathrm{~V},\left.\right|^{\prime}$.
The KV' KV now be put in a matrix form as
The KVL equations ean now be put in a maria form at

Example 3.3 From Fig. 3.1(c), choose the tree (1, 2, 4.5) and write the KVL in matrix form.

Solution

The tree is shown in Fig. 3.17 in solid lines and the links in dotted lines.

-18. 8.17 Network with tree branches and links.
The KVL equations can be written by inspection as

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 4 & 5 & 3 & 6 & 7 & 8 & 9 \tag{3.10}\\
-1 & -1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 1 & -1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 & 1 & 0 & 0 \\
-1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{4} \\
v_{5} \\
v_{3} \\
v_{6} \\
v_{7} \\
v_{8} \\
v_{9}
\end{array}\right]=0
$$

Generalization

If the preceding procedure is followed for a general finite graph, then the KVL equations can be written in a form

$$
e-n+1\left[\begin{array}{ll}
n-1 & e-n+1 \tag{3.11}\\
\boldsymbol{C}_{\boldsymbol{b}}: & \boldsymbol{U}
\end{array}\right]\left[\frac{\boldsymbol{v}_{b}}{\boldsymbol{v}_{\ell}}\right]=0
$$

that is

$$
C v=0
$$

where
C_{b} is a $(e-n+1) \times(n-1)$ matrix.
\boldsymbol{U} is a $(n-1)$ square matrix.
v_{b} is sub-vector of order $(n-1)$ corresponding to the tree-branch variables.
\boldsymbol{v}_{ℓ} is a sub-vector of order $e-n+1$ corresponding to the link variables.
C is called the fundamental loop matrix.

The existence of the unity sub-matrix in \boldsymbol{C} is easily verified from the fact that,
(i) each fundamental loop contains one link only, and
(ii) the positive orientation of the loop coincides with the orientation of the link for that particular loop.
In general, the entries C are such that,
(i) $c_{i j}=+1$ if the element corresponding to the j th column is in the fundamental loop defined by the link in the i th row and their orientations agree.
(ii) $c_{i j}=-1$ if the element corresponding to the j th column is in the fundamental loop defined by the link in the i th row but their orientations are opposite.
(iii) $c_{i j}=0$ if the element corresponding to the j th column is not in the fundamental loop defined by the link in the i th row.
Example 3.4 For the transmission network shown in Fig. 3.18(a), assume that the shunt admittances at each bus are lumped into a single admittance. The oriented system graph is shown in Fig. 3.18(b) with (0) representing the ground bus. Pick a tree and write the fundamental loop matrix C.

(a)

(b)

Fig. 3.18 Transmission, network, graph tree and co-tree

Solution

The following tree is chosen with the tree branches $(2,4,7,8)$, shown by solid lines. The links are $(1,3,5,6,9)$ shown by dotted lines. The orientations for the fundamental loops are shown with dotted lines. The C matrix is written as

3.5.5 Fundamental Cutset

Another basic concept in graph theory is that of a cutset. A cutset of a connected graph is defined as the minimal set of elements whose removal leaves the graph in exactly two parts. Consider the graph in Fig. 3.19(a). Removal of elements (3, 4, 5, 6, 7) [Fig. 3.19(b)] leaves the graph in three

Fig. 3.19 Graph and cutset concept
parts as shown in Fig. 3.19(c). Note that node (5) by itself constitutes a subgraph. Hence (3, 4, 5, 6, 7) does not form a cutset. On the other hand, removal of (4, 6, 7) [Fig. 3.19(d)] leaves it in two parts as shown in Fig. 3.19(e). Hence $(4,6,7)$ is a cutset. The elements of the cutset can also be selected by "cutting" the graph with a curved (dotted) line not passing through any node and dividing the graph in two connected

Fig. 3.20 Further illustration of cutset of Fig. 3.19(d). subgraphs. The cutset $(4,6,7)$ also divides the nodes of the graph into two groups, one group consisting of nodes (1), (3), (4), (5) and the other group consisting of nodes (2), (6) and (7). The edges of the cutset connect the nodes between the two groups as shown in Fig. 3.20. The reader may verify the other cutsets in Fig. 3.19(a) as (2, 11, 7), (1, 2, 3, 4), (4, 6, 9, 10), (2, 4, 6,11), etc. Just as the concept of fundamental loops is associated with a link, so is the concept of fundamental cutsets associated with a tree branch that we discuss next.

The tree is a connected subgraph of a given graph. Removal of any tree branch leaves the tree in two parts, each part having a certain number of nodes. We thus have two groups of nodes. The edges of the graph connecting these two groups of nodes are called fundamental cutsets and correspond to that particular tree branch. The edges of the cutset are the particular tree branch and other links that connect the two groups of nodes. Thus, for each treebranch we have an associated fundamental cutset. Altogether, we have $(n-1)$ fundamental cutsets in all since a tree in an n node graph has $(n-1)$ edges.

Consider the graph in Fig. 3.21(a). Let the tree branches be (2, 4, 5, 7) which constitutes a connected graph [Fig. 3.21 (b)]. Removal of tree-branch 2 in the tree divides the nodes into two groups of nodes as shown in Fig. 3.21(c). We then insert all the possible links of the graph between the two nodes. This constitutes a fundamental cutset associated with branch 2. For convenience, the tree-branch 2 is shown in a solid line and the other links are shown in dotted lines. The fundamental cutsets corresponding to other tree-branches, that is 4,5 and 7 are similarly shown in Figs 3.21 (d), (e), and (f), respectively. To avoid this laborious prơcedure, we can follow the simple rule of cutting the graph by a curve not crossing any node such that it cuts only one tree-branch at a time. This is shown in Fig. 3.21(g). Thus, the fundamental cutsets for the graph in Fig. 3.21(a) and the chosen tree in Fig. 3.21(b) are $(\underline{2}, 1,6),(4,1,3),(5,1,3)$, and $(7,6)$ the treebranches are underlined).

(b)

(f)

Fig. 3.21 Network and fundamental cutsets.
It is of interest to remark here that a set of linearly independent cutsets can also exist which cannot be determined by a tree. As an example, consider the graph in Fig. 3.22. The elements incident on each node is a cutset and the edges of each cutset are the ones cut by a curved line. But as we shall see later, only $(n-1)$ cutsets in an n node graph constitute a linearly independent set of cutsets.

Fig. 3.22 Cutsets not generated by a tree.

3.5.6 Kirchhoff's Current Law (KCL) and the Fundamental Cutset Matrix

Just as in the case of fundamental loops we shall use KCL to derive another important topological relationship. We shall use the same graph (Fig. 3.16) as for KVL and is reproduced in Fig. 3.23. Choose ($1,3,4$) as the tree.

The three fundamental cutsets associated with tree-branches are shown by the dotted

Wgekers
Fund a mental
cutsets and $K C L$ curved lines. These are (1,5), $(2,3,5)$ and
$(2,4)$. The underlined element corresponds to the tree branch. If corresponding to each fundamental cutset, the curved dotted line were extended to form a closed surface, then KCL states that the algebraic sum of the currents leaving a closed surface is zero. To apply KCL systematically, we define the orientation of each cutset to coincide with the orientation of the associated tree branch. In writing KCL we give $a+$ sign to an edge of the cutset if its orientation agrees with the orientation of the cutset and a - sign if it is opposite. Application of KCL to each of the three cutsets in Fig. 3.23 gives

$$
\begin{align*}
& i_{1}-i_{5}=0 \tag{3.13a}\\
& -i_{2}+i_{3}-i_{5}=0 \tag{3.13b}\\
& i_{2}+i_{4}=0 \tag{3.13c}
\end{align*}
$$

Arranging Eqs. (3.13a), (3.13b) and (3.13c) in matrix form we get

As in the case of the fundamental loop matrix, the current variables associated with the tree branches are listed first followed by the variables associated with the links.
Example 3.5 For the graph in Fig. 3.24 and tree (1, 2, 4, 5), write the KCL.

Solution

The fundamental cutsets are shown in Fig. 3.24 along with their positive orientations shown by an arrow in the direction coinciding with that of the tree branch. The KCL is written as

$$
\begin{gather*}
\text { Tree branches } \tag{3.15}\\
1 \\
1
\end{gather*} 24_{1}
$$

Generalization
For a general graph we can write the KCL as

$$
n-1\left[\begin{array}{cc}
n-1 & e-n+1 \tag{3.16}\\
\boldsymbol{U} 1 & \boldsymbol{B}_{i}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{i}_{k} \\
\boldsymbol{i}_{i}
\end{array}\right]=0
$$

Since each fundamental cutset contains only one tree branch, the nature of the unity matrix \boldsymbol{U} is self-evident. In a more compact form

Fig. 3.24
Fundamental cutsets
(3.17)

$$
B i=0
$$

and \boldsymbol{i} is the vector of currents arranged in the order of tree branch and link currents. B is called the fundamental cutset matrix. It has unity submatrix of order $(n-1)$ in the leading position and the matrix \boldsymbol{B}_{f} of order $(n-1) \times$ $(e-n+1)$ in the trailing position. Each row is identified with a tree branch. The entries of the matrix \boldsymbol{B} are such that
$b_{i j}=1$, if the orientation of the element corresponding to the j th column agrees with the orientation of the tree branch corresponding to the i th row.
$b_{i j}=-1$, if the orientation of the element in the j th column is opposite to the orientation of the tree branch corresponding to the i th row.
$b_{i j}=0$, if the orientation corresponding to the j th column does not belong to the tree branch corresponding to the i th row.
Example 3.6 For the graph in Fig. 3.18(b) and the chosen tree (2, 4, 7, 8), write the B matrix.

Fig. 3.25 Graph and fundamental cutsets for the transmission network of Fig. 3.18.

Solution

The graph is redrawn in Fig. 3.25 with the curved lines defining the fundamental cutsets. The \boldsymbol{B} matrix is written by inspection as

$$
\begin{equation*}
\boldsymbol{B}=\left(\right) \tag{3.19}
\end{equation*}
$$

3.5.7 Incidence or Vertex Matrix

One of the characterizations of a graph is the incidence matrix. The edges incident to a node in a graph is called the incidence set. Thus a connected graph has as many incidence sets as there are nodes. We can write KCL at each of these nodes giving a + sign to the currents leaving the node and

Fig. 3.26 Incidence sets in a graph. a-sign to the currents entering the node. Alternatively, we can interpret each incidence set as a cutset with a line enclosing the node and the positive orientation of the cutset outwards from the dotted closed line (see Fig. 3.26). The KCL equations for nodes (1)-(4) can be written as

$$
\begin{align*}
& i_{1}-i_{5}=0 \tag{3.20a}\\
& -i_{1}-i_{2}+i_{3}=0 \tag{3.20b}\\
& i_{2}+i_{4}=0 \tag{3.20c}\\
& -i_{3}-i_{4}+i_{5}=0 \tag{3.20d}
\end{align*}
$$

In matrix form Eqs (3.20a) to (3.20d) can be written as $\operatorname{soh} /=\mathrm{k}$

$$
\begin{align*}
& i_{1}-i_{5}=0 \tag{3.20a}\\
& -i_{1}-i_{2}+i_{3}=0 \tag{3.20b}\\
& i_{2}+i_{4}=0 \tag{3.20c}\\
& -i_{3}-i_{4}+i_{5}=0 \tag{3.20d}
\end{align*}
$$

In matrix form Eqs (3.20a) to (3.20d) can be written as

$$
\begin{gather*}
\begin{array}{c}
\text { (1) }\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 0 & -1 \\
\text { (2) } \\
\text { Nodes } \\
\text { (3) } \\
\text { (4) }
\end{array}\left(\begin{array}{ccccc}
i_{1} & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 1
\end{array}\right)\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4} \\
i_{5}
\end{array}\right]=0\right. \\
\boldsymbol{A}_{a} \boldsymbol{i}=0
\end{array}
\end{gather*}
$$

In general, the order of $\boldsymbol{A}_{\boldsymbol{a}}$ is $n \times e$ where $n=$ number of nodes and $e=$ number of edges in the graph. $\boldsymbol{A}_{\boldsymbol{a}}$ is called the node to branch incidence matrix or augmented incidence matrix. The entries of $\boldsymbol{A}_{\boldsymbol{a}}$ are such that
if the edge corresponding to the j th column is incident to the . if edge correspong row and is directed away from it
$\left(a_{i j}\right)_{a}=-1$ if the edge corresponding to the row and is directed towards the aresponding to the j th column is not incident to the $\left(a_{i j}\right)_{a}=0$ if the edge correspon the i th row. node corresponding to the in element is incident on two nodes, the It may be observed that since each $a+1$ and $a-1$ entry. If we add up all columns of the $\boldsymbol{A}_{\boldsymbol{a}}$ matrix have zero row. This indicates the rows are linearly the rows of \boldsymbol{A}_{a} matrix we get a zerly independent rows is $n-1$ or we say that dependent. The number of linearly 1). We can delete any one row and the the rank of the matrix A_{a} is $(n-1)$. Weincidence or simply the incidence resulting matrix \boldsymbol{A} is called the reduc
matrix. The order of \boldsymbol{A} is $(n-1) \times \boldsymbol{e}$. . present, it is generally the reference
In power networks, if a ground bus it is generally deleted in writing the A bus and the node corresponding to it of ground, one of the nodes is taken matrix. If the network has no conneting the \boldsymbol{A} matrix.
Example 3.7 Write the reduced incidence matrix for the transmission network in Fig. 3.18. Choose the ground bus (0) as reference bus.

Solution

By inspection, the matrix \boldsymbol{A} is written as

$$
\boldsymbol{A}=\operatorname{Nodes} \begin{gathered}
\text { (1) } \\
(2) \\
(3) \\
\text { (4) }
\end{gathered}\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & +1 & -1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

3.5.8 Interrelationships between the Matrices A, B, C and the Network Graph

In \boldsymbol{A} matrix the columns corresponding to the edges were arranged sequentially. They can be written in any particular order. In fact, one of the ways is to arrange the columns in the order of tree branches and links for a given tree in the graph. Thus, we can write A as
Tree branches Links

$$
\begin{equation*}
A=\left[A_{b} \mid A_{\ell}\right] \tag{3.22}
\end{equation*}
$$

The following properties are now stated without a rigorous proof and illustrated for some examples. The proofs can be found in texts on graph theory.

Property 1

For a given tree of a graph each row of the fundamental loop matrix C is orthogonal to each row of the fundamental eutset matrix B. Mathematically this relationship implies

$$
\begin{equation*}
B C^{T}=C^{\top} \boldsymbol{n}=0 \tag{3.23}
\end{equation*}
$$

Since $\boldsymbol{B}=|\boldsymbol{U}| \boldsymbol{B}_{i} \mid$ and $\boldsymbol{C}=\left|\boldsymbol{C}_{b}\right| \boldsymbol{U} \mid$, it follows

$$
\begin{equation*}
\left[\boldsymbol{U} \mid \boldsymbol{B}_{i}\right]\left[\frac{\boldsymbol{C}_{h}^{\prime}}{\boldsymbol{U}}\right]=0 \tag{3.24}
\end{equation*}
$$

Therefore, $\boldsymbol{C}_{b}^{T}=-\boldsymbol{B}_{c}$ which is the same as

$$
\begin{equation*}
\boldsymbol{C}_{b}=-\boldsymbol{B}_{\}}^{T} \tag{3.25}
\end{equation*}
$$

This is a very important result. It tells us that for a given tree of a graph, if the fundamental loop matrix C is known, the fundamental cutset matrix is also known and vice-versa. This relationship can be verified from Eq. (3.25),

Property 2

Let the incidence matrix \boldsymbol{A} be arranged in the order of tree branches and links for a given tree, i.e.

$$
\boldsymbol{A}=n-1\left[\begin{array}{lll}
n-1 & e-n+1 \tag{3.26}\\
\boldsymbol{A}_{b} & 1 & \boldsymbol{A}_{\boldsymbol{t}}
\end{array}\right]
$$

It can be shown that \boldsymbol{A}_{b} is nonsingular. Furthermore, the fundamental cutset matrix for the given tree is given by

$$
\begin{align*}
\boldsymbol{B} & =\boldsymbol{A}_{b}^{-1} \boldsymbol{A} \\
& =\boldsymbol{A}_{b}^{-1}\left[\boldsymbol{A}_{b} \mid \boldsymbol{A}_{c}\right] \\
& =\left[\boldsymbol{U} \mid \boldsymbol{A}_{b}^{-1} \boldsymbol{A}_{c}\right] \tag{3.27}
\end{align*}
$$

since

$$
B=\left[U \mid B_{\ell}\right]
$$

we have

$$
\boldsymbol{B}_{\ell}=\boldsymbol{A}_{b}^{-1} \boldsymbol{A}_{\ell}
$$

This important result tells us that by choosing a tree and writing the incidence matrix by inspection (or computer generated) we can obtain the fundamental cutset matrix \boldsymbol{B} and also the fundamental loop matrix \boldsymbol{C} from Property 1.
Example 3.8 Consider the graph shown in Fig. 3.27. Choose the tree whose branches are $(1,3,5)$. Find the fundamental cutset and loop matrices B and C using the incidence matrix A.

Fig. 8.27 Oriented graph

Solution
Choosing (2) as the reference node, we write the reduced incidence matrix A as

Therefore,

$$
\begin{align*}
\boldsymbol{A}_{b}^{-1} \boldsymbol{A}_{\ell} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right] \tag{3.30}\\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & -1 \\
-1 & 1
\end{array}\right]
\end{align*}
$$

Hence,
Tree branches Links

$$
\begin{array}{llll}
1 & 3 & 5 & 2
\end{array}
$$

$$
B=3\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right)
$$

$$
=\left[\begin{array}{l|l|}
\boldsymbol{U} \mid B_{\ell}
\end{array}\right]
$$

Since $\boldsymbol{C}_{b}=-\boldsymbol{B}_{\ell}^{T}$, we have

The nature of matrices of B and C can be independently verified from the graph.

[^0]\[

$$
\begin{align*}
& \text { Tree branches Links } \\
& C=\frac{2}{4}\left(\begin{array}{cccccc}
-1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 & 1
\end{array}\right) \tag{3.32}
\end{align*}
$$
\]

$$
\begin{align*}
& \left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 1 \\
-1 & 0 & -1 & 1 & 0 & -1
\end{array}\right) \tag{3.28}\\
& =\left[A_{b} \mid A_{t}\right] \\
& \boldsymbol{A}_{b}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right] \tag{3.29}
\end{align*}
$$

Bus Admittriee mahix:-

- The Bns Adunttance marisa is formed and und in load flow, thest cimit and brassant statoslits studses.
- 2t relates un cunents wirk bus vottres.

$$
[I]=[Y][V]
$$

where
[I] : veder 2 bon cumarts, $(n b \times 1)$
$[v]=$ vecter 2 bus voltaps $(n b \times 1)$
$[y]=$ bes adrnitrouse motrex (nbxnb)
nb: number or buns.

- $2 t$ is a squene mahrix.
- 2t is a dymmetric matix. But in the netuodes havicy prase shittinis tramternes, it is nom-symmehic.
- 2t wit be sinpular, it there is no shunt connections such on lui chargi admittunce, shunst capacitance etc to the ground.
- It will be now-singular, it there are rhunt connections to the guound.
- $2 r$ con be formed eittur by mopetim or by analytical meltiod.

Formatim or hus aduntinue by the melliod p imspetion:-
consider the bammosion ryptun thenn in tig. The linie impedances joining buns 1,2 and 3 we densted hy B_{12}, Z_{23} and δ_{11} renpectucly. The cerrespendenin hire admittences are y_{12}, y_{23} and y_{31}

The total capacitance susceptances at the buses one represented ing $y_{i 0}, Y_{20}$, and y_{30}. Applying KCL at each bus, we fer

$$
\begin{aligned}
& I_{1}=v_{1} \cdot y_{10}+\left(v_{1}-v_{2}\right) \cdot y_{12}+\left(v_{1}-v_{3}\right) \cdot y_{13} \\
& I_{2}=v_{2} \cdot y_{20}+\left(v_{2}-v_{1}\right) \cdot y_{21}+\left(v_{2}-v_{3}\right) \cdot y_{23} \\
& I_{3}=v_{3} \cdot y_{30}+\left(v_{3}-v_{1}\right) y_{31}+\left(v_{3}-v_{2}\right) \cdot y_{32}
\end{aligned}
$$

In matrix form,

$$
\left[\begin{array}{l}
I_{1} \\
I_{1} \\
I_{3}
\end{array}\right]=\left[\begin{array}{ccc}
y_{10}+y_{12}+y_{13} & -y_{12} & -y_{13} \\
-y_{12} & y_{20}+y_{12}+y_{23} & -y_{23} \\
-y_{13} & -y_{23} & y_{30}+y_{13}+y_{23}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

where

$$
\begin{aligned}
& y_{11}=y_{10}+y_{12}+y_{13} \\
& y_{22}=y_{20}+y_{12}+y_{23} \\
& y_{33}=y_{30}+y_{13}+y_{23}
\end{aligned}
$$

the sett admitames forming the diagonal terms and

$$
y_{12}=y_{21}=-y_{12} ; \quad y_{13}=y_{31}=-y_{13} ; y_{23}=y_{32}=-y_{23}
$$

are the mutual admittuces fermung the off diagonal elements of the bus admittance mahix. For an n-bus system, the elements is the bus admittance matrix can be written down by inspection of the netwolle as

Diagonal temp: $y_{i i}=y_{i 0}+\sum_{k=1}^{n} y_{i k}$

$$
k \neq i
$$

Off-diagonal. term: $Y_{i j}=-y_{i j}$

Note: This melted of impection is and andy for those sirens which do not contain mutually coupled dements.

Flow Chart for Inspection Method

Analytical method:- The Yibus matria can be formed by analytical meterd ho the trstenn will or withant nutual compleif. The bon admentane matua can be formed by unving the relation

$$
[Y]=[A][y][A]^{\top}
$$

where
$[y]=$ ben adunitance matixx, sige (wbxnb)
$[A]=$ reduced incidence mahrix. (neplectinis the ground node).
$a_{i j}=1$; it the $j^{\text {th }}$ element is incident at and criented away from $i^{\text {th }}$ node
$a_{i j}=-1$; if the $j^{\text {th }}$ element is incident at and oriented towards the $i^{\text {th }}$ node.
$a_{i j}=0$; if the $j^{\text {th }}$ element is not mcident at the $i^{\text {th }}$ node.

$$
[y]=\underset{\text { pisinsitive }(n e x n e)}{\text { admitsance matrx }}=[y]^{-1}
$$

ne: no.s elements.
nb: no s buns.
[3] = primitive impetance matix, fige (nexne)
Bii : dingenal term \& (D], selt impelance os $i^{\text {to }}$ element.
Dii: At-diagenal hem is [2], mutnal ingedaux between the elements ind j; It thene is no mutural impedane, the value is geto.

Derivation or the formenla:
Let $[v]$: bom voltaper $\mathrm{Hg}(n b \times 1)$
$[I]=$ vechor s moments $\operatorname{Hos}(n \mid 6 \times 1)$
$[i]=$ vector or element coments $H \mu(n e \times 1)$
$[v]=$ vechn os elemant voltagn nge (nexi)

The pectannance eqs in aduntance form is gwie hy

$$
\begin{equation*}
[I]=[y][v] \tag{20}
\end{equation*}
$$

but

$$
\begin{align*}
& {[I]=[A][i]} \tag{2}\\
& {[v]=[A]^{2}[V]} \tag{3}\\
& {[i]=[y][v]}
\end{align*}
$$

Sub. (3) x (4) in (2), we get

$$
\begin{equation*}
[I]=[A][y][A]^{2}[V] \tag{5}
\end{equation*}
$$

Comparing (3) and (1), we can inute

$$
[y]=[A][y][A]^{2} .
$$

Alynitem:-

1. Forn bons incidence makis $[A]$
2. Forn primitine impedance marira $[\partial]$
3. Compute primitive admitsance makia $[y]$ by incatini $[\partial]$
4. Form $[Y]$ matra by ussing

$$
[y]=[A][y][A]^{\top}
$$

5. Piunt tis results.

Problem A power system witt 5 buss and 8 hives has the follaunis data. Fores the $[y]$ matrix by analytical method

$\operatorname{Ln} i$	$S B$	$E 3$	X
1	1	4	0.6
2	5	1	0.2
3	2	3	0.2
4	2	4	0.4
5	2	5	0.2
6	3	4	0.4
7	1	0	0.25
8	2	0	1.25

Mutual reactance

we have to invent the above mania to find $[y]$. Simple method for finduiy the wivern:-
(1) Choose the row which has least rios oft diagonal terms and form the submatix. Then weest this submshix.
Row. 2

$$
2\left[\begin{array}{cc}
2 & 5 \\
0.2 & -0.15 \\
-0.15 & 0.2
\end{array}\right]^{-1}=\left[\begin{array}{cc}
11.4286 & 8.5714 \\
8.5714 & 11.4286
\end{array}\right]
$$

$\mathrm{IILI}^{\text {LI }}$ choose the neat now

$$
\text { Row.1 } \begin{array}{ll}
1 & 1 \\
& 4 \\
& 4 \\
0.6 & 0.1 \\
\hdashline 0.1 & 0.2 \\
\hdashline 0.3 & 0
\end{array}
$$

$$
=\left[\begin{array}{ccc}
3.0769 & -1.5385 & -2.3077 \\
-1.5385 & 5.7692 & 1.1538 \\
-2.3077 & 1.1538 & 4.2308
\end{array}\right]
$$

For those rrous withent M-dingenal temns, simply muent the dingenal values.

$[A]=$

($n b \times n e$)

$$
[y]=[A][y][A]^{+h}=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
18.5055 & -12.4176 & 1.5385 & -0.7692 & -2.8572 \\
-12.4176 & 24.5362 & -6.923 & -1.5387 & -2.857 \\
-1.5385 & -6.923 & 8.2692 & 0.1923 & 0 \\
-0.7692 & -1.5384 & -2.8847 & 5.1923 & 0 \\
-2.872 & -2.8572 & 0 & 0 & 5.7292
\end{array}\right]
$$

$\frac{\text { Stagy }}{P p-61}$
Form the buss admultance matria by the analyticel melhod.

soln

$$
\begin{aligned}
& {[8]=\begin{array}{lllll}
1 \\
2 \\
4 \\
5
\end{array}\left[\begin{array}{lllll}
0.6 & 0.1 & & 0.2 \\
0.1 & 0.5 & & \\
0.2 & & 0.5 & & \\
& & & 0.4 & \\
& & & & 0.2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {[y]=\begin{array}{ccccc}
1 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{ccccc}
2.0839 & -0.4167 & 0 & -1.0417 & 0 \\
-0.4167 & 2.0833 & 0 & 0.2083 & 0 \\
0 & 0 & 20.0 & 0 & 0 \\
0 & 0.2083 & 0 & 3.0208 & 0
\end{array}\right]}
\end{aligned}
$$

$$
[A]=\begin{gathered}
1 \\
3 \\
3 \\
4
\end{gathered}\left[\begin{array}{ccccc}
1 & 1 & 0 & 1 & 0 \\
-1 & 0 & 0 & -1 & 1 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & -1
\end{array}\right]
$$

$[A][y]=\begin{gathered}1 \\ 2 \\ 3 \\ 4\end{gathered}\left[\begin{array}{ccccc}0.6255 & 1.8749 & 0.0 & 2.1874 & 0.0 \\ -1.0422 & 0.2084 & 0.0 & -1.9791 & 5.0 \\ 0.4167 & -2.0833 & 20.0 & -0.2083 & 0.0 \\ 0.0 & 0.0 & -20.0 & 0.0 & -5.0\end{array}\right]$
$[A][y][A]^{t r}=\begin{aligned} & 1 \\ & 3 \\ & 4\end{aligned}\left[\begin{array}{cccc}4.6878 & -2.8129 & -1.8749 & 0.0 \\ -2.8129 & 8.0213 & -0.2084 & -5.0 \\ -1.8749 & -0.2084 & 22.0833 & -20.0 \\ 0.0 & -5.0 & -20.0 & 25.0\end{array}\right]$

Bus Impedance Maria: Bun impedance matrix $[z]$
is obtaniced by investing the bus adenittance matisx. It can -atro be formed by bus building afferithm.

- 2r is a square mahix
- 2tir a mmmetuc mania.
- Qt is a um-singular matrix.
- 21 relates bun voltage and bon comments.

$$
[v]=[z][I]
$$

Inversion process is a tedious process for forming [2]. becaun He e order os the manic to be melted is 'nb'. Therefore, this method cannot be used for layer neturves. In addition, [z] mathias can not be directly altered to reflect the change (ic addition or removal of an dement) in the network. It can be dene by modifying the You matrix and once gain uverting it for the changes in the netruake.

At alternative meltiod of forming the $[z]$ matrix is the bus buidevis algorithm. It is a step by step proceduce of forming [Z] matrix by addenis ne element at a time. In this meltrad the $[z]$ mathia can be directly attend to repleat the chomper in the netwrate.

Building Algorithm:-

Addition or a line with mutual compline :-

$$
\begin{equation*}
Z_{b u s}=Z_{\text {bus }}(0)-\frac{Z_{b u s}(0) c_{1} c_{1}^{\top} Z_{\text {bus }}(0)}{c_{1}^{\top} Z_{b \operatorname{bn}}(0) \cdot c_{1}+1 / y_{\alpha \alpha}} \tag{20}
\end{equation*}
$$

where

$$
c_{1}=k_{1}+\frac{A_{0} y_{0 \alpha}}{y_{\alpha \alpha}}
$$

$k_{1}=$ submatiax of the $[A]$ corr. to the added element. it indicates that how the new element is incident to the partial neturle. A tor parkin vetwalk
$A_{0}=$ onbmatia $i[A]$ corr to the elements coupled to the new element.
$y_{\text {da }}=$ set admittance of the dement, obtained from the primitive admittmuen unbox formed by inverting the

 the new element and the conghis demons.

Additim or a finite wittent mutual compline :-

$$
\begin{equation*}
Z_{\text {bus }}=Z_{\text {bus }}(0)-\frac{Z_{b u s}(0) \cdot k_{1} k_{1}{ }^{\top} Z_{b m}(0)}{k_{1}{ }^{\top} Z_{b u s}(0) k_{1}+Z_{\alpha \alpha}} \tag{2}
\end{equation*}
$$

Addition s a branch with mutual coupling :-

$$
z_{b m}=\left[\begin{array}{ll}
Z_{b m}(0) & z_{b m}(0) \cdot c_{2} \\
c_{2}^{\top} z_{\operatorname{bm}}(0) & c_{2}^{\top} Z_{b m}(0) \cdot c_{2}+\frac{1}{y_{\alpha \alpha}}
\end{array}\right]
$$

where

$$
c_{2}=k_{2}+\frac{A_{0} y_{0 \alpha}}{y_{\alpha \alpha}}
$$

$k_{2}=\operatorname{submanix} x$ is A cerrespanders to the added element withent considennis the new node.

Addition os a branch withent mutual complain i.

$$
Z_{b n s}=\left[\begin{array}{ll}
z_{b u s}(0) & z_{b m}(0) \cdot k_{2} \\
k_{2}^{\top} Z_{b u s}(0) & k_{2}^{\top} Z_{b m}(0) k_{2}+z_{\alpha \alpha}
\end{array}\right]
$$

Step: -
(1) Identity the branches and links; and form the rented graph.
(3) Choose the ref node.
(2) Start with the ref node. Now Zbus manta contains no elements
(4) Add one dement to the ref. bus. For this partial network, form the Zoom matrix wing qu. (5). The zeus martha correrpmenif to kin partial netwate contains only one value.
(5) Add one more dement, which may be branch or a link to the partial netuote uric, the appoppante ert (1) - (3, to the ponbint dement neturote and firm the Km, matrix numis the apompiana equ (1) -() if the added dement is a brunch, the dye of zoo matrix If the added element is a levite, the rye 12 mm matrix will not imereare.
(6) Repeat step (5), till all the elements me added me by one to the partial networks.

Compute the bus impedance matrix for the nehwolle Tomes in H_{2}. Bums, can be taken m the reference bus, trice wore are no runt cermestsons to ground in serin cane.
(2)

Sold:-
(1) Draw the oriented gragot by identifying the branches and links.

(2) Choose the ref-bus. it the nc are shunt cennectsms to the ground, then ground is taken as the ref. node, olturst choose any otter bus as the g reference nude. In this example, bun 1 is taken as the reference node.
(3) element - a : Addition os a branch :

$$
Z_{b m}=2[0.1]
$$

(4) element $-b$: Addition of a branch wo mutual compline :

$$
\begin{aligned}
& Z_{\text {buns }}=\left[\begin{array}{ll}
Z_{\operatorname{bus}}(0) & z_{\cos }(0) k_{2} \\
k_{2}^{\top} Z_{\operatorname{bon}}(0) & k_{2}{ }^{\top} Z_{\operatorname{bin}}(0) k_{2}+Z_{\alpha \alpha}
\end{array}\right] \\
& {[A]=2\left[\begin{array}{c:c}
-1 & 1 \\
\hdashline 0 & -1
\end{array}\right]-k_{2}} \\
& 2 \int_{0}^{2} 3 \\
& {[z]=\begin{array}{l}
a \\
b
\end{array}\left[\begin{array}{ll}
0.1 & 0 \\
0 & 0.4
\end{array}\right] \text { max }} \\
& \text { : impertence of the } \\
& \text { added branch. }
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=[1] ; Z_{\alpha \alpha}=[0.4] ;\left[\begin{array}{cc}
0 \cos (0)=\left[\begin{array}{ll}
0.1
\end{array}\right] \\
\left.Z_{\text {bus }}=\left[\begin{array}{cc}
0.1 & 0.1 \\
0.1 & 0.1+0.4
\end{array}\right]=\begin{array}{cc}
2 & 0.1 \\
3 & 0.1 \\
0.1 & 0.5
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

(5) element -C : Addition of a link who mutual compiling

$$
Z_{\text {bon }}=Z_{\text {buns }}(0)-\frac{Z_{\text {buns }}(0) \cdot k_{1} k_{1}^{\top} Z_{\text {bus }}(0)}{k_{1}^{\top} Z_{\text {bon }}(0) \cdot k_{1}+Z_{\alpha \alpha}}
$$

$[A]=2\left[\begin{array}{cc|c}a & b & c \\ -1 & 1 & 0 \\ 0 & -1 & -1\end{array}\right]$

$$
\left.Z_{\alpha \alpha}=\operatorname{selt~impedance~}_{\text {o the line }}\right\}=0.5
$$

$$
\begin{aligned}
& k_{1}^{\top} z_{\text {bus }}=\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0.1 & 0.1 \\
0.1 & 0.5
\end{array}\right]=\left[\begin{array}{ll}
-0.1 & -0 \\
k_{1}^{\top} z_{\text {bus }} k_{1}=\left[\begin{array}{ll}
-0.1 & -0.5
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=[0.5]
\end{array} \$.=\left[\begin{array}{l}
0.5
\end{array}\right)\right.
\end{aligned}
$$

$$
z_{\text {bus }} \cdot k_{1}=\left[\begin{array}{ll}
0.1 & 0.1 \\
0.1 & 0.5
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-0.1 \\
-0.5
\end{array}\right]
$$

$$
Z_{\text {bus }} k_{1} k_{1}^{\top} Z_{b n}=\left[\begin{array}{l}
-0.1 \\
-0.5
\end{array}\right]\left[\begin{array}{ll}
-0.1 & -0.5
\end{array}\right]=\left[\begin{array}{ll}
0.01 & 0.05 \\
0.05 & 0.25
\end{array}\right]
$$

$$
k_{1}^{\top} Z_{\text {bus }} k_{1}+Z_{\alpha \alpha}=0.5+0.5=1.0
$$

$$
Z_{\text {bus }}=\left[\begin{array}{ll}
0.1 & 0.1 \\
0.1 & 0.5
\end{array}\right]-\left(\left[\begin{array}{ll}
0.01 & 0.05 \\
0.05 & 0.25
\end{array}\right] \div 1.0\right)=\left[\begin{array}{ll}
0.09 & 0.05 \\
0.05 & 0.25
\end{array}\right]
$$

(6) element - d : Addition os a branch wo mutual coupling

$[A]=\begin{aligned} & \left.2\left[\begin{array}{ccc|c}-1 & 1 & 0 & 0 \\ 3 & 4 & -1 & -1 \\ 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right] \leqslant k_{2}\right\}\end{aligned}$

$$
Z_{\alpha \alpha}=[0.5]
$$

$$
Z_{\text {bm }}=\left[\begin{array}{cc:c}
0.09 & 0.05 & 0.0 \\
0.05 & 0.25 & 0.0 \\
\hdashline 0.0 & 0.0 & 0.5
\end{array}\right]
$$

(7) element -e: Addition of a branch with mutual cmplnis.

$$
\begin{aligned}
& c_{2}=k_{2}+\frac{A_{0} y_{0 \alpha}}{y_{\alpha \alpha}} \\
& {[A]=\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & -1
\end{array}\right]-k 2} \\
& {\left[k_{2}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] ; \quad\left[A_{0}\right]=\left[\begin{array}{c}
\text { col. vector } \\
\text { o the } \\
\text { complex element } b
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]} \\
& {\left[\partial_{c}\right]=b\left[\begin{array}{cc}
b & c \\
0.4 & 0.1 \\
0.1 & 0.2
\end{array}\right]} \\
& |\Delta|=0.07:\left[y_{c}\right]=\left[\partial_{c}\right]^{-1}=e_{e}^{b}\left[\begin{array}{l}
b .857-1.4286
\end{array}\right. \\
& c_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\frac{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right][-1.4286]}{[5.714]}=\left[\begin{array}{l}
0.75 \\
0.25 \\
0.0
\end{array}\right] \\
& C_{2}^{\top} Z_{\text {bus }}=\left[\begin{array}{lll}
0.75 & 0.25 & 0.0
\end{array}\right]\left[\begin{array}{lll}
0.09 & 0.05 & 0.0 \\
0.05 & 0.25 & 0.0 \\
0.0 & 0.0 & 0.5
\end{array}\right]=\left[\begin{array}{lll}
0.08 & 0.1 & 0.0
\end{array}\right] \\
& C_{2}^{\top} Z_{\operatorname{bon}} C_{2}=\left[\begin{array}{lll}
0.08 & 0.1 & 0.0
\end{array}\right]\left[\begin{array}{l}
0.75 \\
0.25 \\
0.0
\end{array}\right]=\left[\begin{array}{l}
0.085
\end{array}\right] \\
& c_{2}^{5} z_{\sin c_{2}+\frac{1}{y_{d \alpha}}=0.085+\frac{1}{5.714}=0.26} \\
& {\left[Z_{\mathrm{un}}\right]=\left[\begin{array}{llll}
0.09 & 0.05 & 0.0 & 0.08 \\
0.05 & 0.25 & 0.0 & 0.1 \\
0.0 & 0.0 & 0.5 & 0.0 \\
0.05 & 0.1 & 0.0 & 0.26
\end{array}\right]}
\end{aligned}
$$

(8) Clement f: Addikm of a linte wita mutual compling:

$$
\begin{aligned}
& z_{6 m}=z_{\text {bm }}(0)-\frac{z_{\text {bm }}(0) \cdot c_{1} \cdot c_{1}{ }^{\top} z_{\text {6ms }}(0)}{c_{1}{ }^{\top} z_{\text {bm }}(0) c_{1}+\left(1 / y_{\alpha \alpha}\right)} \\
& c_{1}=k_{1}+\frac{A_{0} y_{0} \alpha}{y_{\alpha \alpha}} \\
& \left.[A]=\begin{array}{cccccc}
2 \\
3 \\
4 & -1 & 1 & 0 & 0 & 1 \\
0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right]+k 1 \\
& {\left[A_{0}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]:\left[k_{1}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]:\left[Z_{c}\right]=e\left[\begin{array}{ccc}
0.4 & 0.1 & -0.2 \\
0.1 & 0.2 & 0 \\
-0.2 & 0 & 0.3
\end{array}\right]} \\
& \begin{array}{ccc}
\text { copachr } t= \\
{\left[\partial_{c}\right]} & e\left[\begin{array}{ll}
+(0.06) & -(0.03)+(0.04) \\
-(0.03) & +(0.08)-(0.02) \\
+(0.04) & -(0.02)+(0.07)
\end{array}\right] \quad|\Delta|=0.013 a
\end{array} \\
& \left.\left[y_{c}\right]=\begin{array}{cc|c}
b & e\left[\begin{array}{cc}
4.6154 & -2.3077 \\
e & 3.0769 \\
-2.3077 & 6.3538
\end{array}\right. & -1.5385 \\
3.0769 & -1.5385 & 5.3846
\end{array}\right] \quad \text { Yod } \\
& \underbrace{}_{\alpha \alpha} \\
& {\left[c_{1}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
3.0769 \\
-1.5385
\end{array}\right] / 5.3846} \\
& =\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
0.2857 \\
-0.5714 \\
0.0 \\
0.2857
\end{array}\right]=\left[\begin{array}{c}
0.2857 \\
-0.5714 \\
1.0 \\
-0.7143
\end{array}\right] \\
& c_{1}{ }^{\top} \text { Zbm }=\left[\begin{array}{llll}
-0.0600 & -0.2000 & 0.5 & -0.22
\end{array}\right] \\
& c_{1}^{\top} \operatorname{Z\operatorname {Lng}C_{1}=0.7578} \\
& -n-1 / y_{2 a}=0.7578+1 / 5.3846=0.9435 .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
C_{1} & C_{1}^{\top} & Z_{b m}
\end{array}\right] }=\left[\begin{array}{cccc}
-0.0171 & -0.0571 & 0.1429 & -0.0629 \\
0.0343 & 0.1143 & -0.2857 & 0.4082 \\
-0.0600 & -0.2000 & 0.5 & -0.2200 \\
0.0429 & 0.0429 & -0.3572 & 0.1571
\end{array}\right] \\
& {\left[Z_{\text {bus }}\right]\left[C_{1} C_{1}^{\top} Z_{b m}\right]=\left[\begin{array}{cccc}
0.0036 & 0.012 & -0.03 & 0.0273 \\
0.012 & 0.04 & -0.1 & 0.1146 \\
-0.03 & -0.1 & 0.25 & -0.11 \\
0.0132 & 0.044 & -0.11 & 0.0766
\end{array}\right] } \\
& Z_{\text {bus }}= Z_{b m s}-\left[\begin{array}{l}
-11-
\end{array}\right] / 0.9435 \\
&=
\end{aligned}
$$

Moditicatims to an exiting network:
Removal of a link with mutual coupling:

$$
Z_{\text {man }}=Z_{\operatorname{man}}(0)-\frac{Z_{\operatorname{mm}}(0) C_{1} C_{1}^{\top} Z_{\operatorname{mn}}(0)}{C_{1}^{\top} Z_{\operatorname{mn}(0)} C_{1}-\left(1 / Y_{\alpha \alpha}\right)}
$$

where

$$
c_{1}=k_{1}+\frac{A_{0} Y_{0 \alpha}}{y_{\alpha \alpha}}
$$

the sign is the any chang compel to the ext $=$ hr addition or a link.
Removal is a like with no mutual couphiy:

$$
Z_{\operatorname{mon}}=Z_{\operatorname{mon}(0)}-\frac{Z_{\operatorname{bon}}(0) k_{1} k_{1}^{\top} Z_{\operatorname{bin}}(0)}{k_{1}^{\top} Z_{\operatorname{bin}(0)} k_{1}-Z_{\alpha \alpha}}
$$

Removal of a radial line:. When an element corresponding to a radial line is remered, me bus got isolated and the number 2 bums is the network is reduced by one. It can be done an g deleting the raw and column corresponding to the isolated hus in the onfinal bus impedance matrix.

If the instated hos is the reference ben itself, then the bus impedance maria s the new netwole is indefinite.

Parameters champs:- when the parameters of an dement is changed, the bun impedance mania can be moditied by simultanenoly remaining the dement with the old parandta and adding an element with the revised parameters.

UNIT-III SPARSITY TECHNIQUES

INTRODUCTION

- Sparsity is the condition of not having enough of something.
- If a matrix contains less number of non-zero elements, then that matrix is considered as sparse matrix. In power systems, most of the matrices like Ybus matrix and Jacobian matrix are sparse matrices.
- Sparsity technique is a programming technique is a digital programming technique by which sparse matrices are stored in a compact form in computer memory.
- Only non-zero elements are stored and calculations are done on non-zero values, thereby not only reducing the computer memory requirement but also reducing the computation time.
- Most the software programs use sparsity techniques effectively in solving very large problems like power flow of Indian Power System.

SPARSITY TECHNIQUES

1. Compact Storage Scheme
2. LU Factorization
3. Optimal Ordering

COMPACT STORAGE SCHEME

While storing non-zero elements of sparse matrices in computer memory, a systematic procedure must be adapted so that the non-zero element can be accessed, altered, included or removed. To handle sparse matrices, two methods are popularly used.

- Entry-Row-Column Method
- Chained Data-Structure Method

Entry-Row Column Method

- Consider a sparse matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$
- The above matrix can be stored in compact form as follows:

STO	RN	CN
1	1	2
3	2	1
2	3	3

where
STO : Stored Non-Zero Values
RN : Row Number
CN : Column Number

- It is very clear from the above example that there are three linear vectors to store non-zero values.
- These three vectors contain all the data present in the original $[A]$ matrix.
- This is the simplest method but it has some drawbacks.
- The main drawback is that data retrieval is not so fast.
- This method is not followed in practice.

Chained Data-Structure Method

- Consider a sparse matrix $A=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0\end{array}\right]$
- The above matrix can be stored in compact form as follows:

The value- 1 in NX vector indicates that there are some more values in the respective row.
If $\mathrm{NX}=0$, there are no more non-zero values in the respective row.

- This method replaces the RN vector by RFirst vector, whose size equals only the number of rows in the given matrix, which further reduces the memory requirement.
- The numbers in the RFirst arrays indicate the index numbers of STO/CN arrays and represent where the a row starts in STO/CN arrays.
- This method is widely used in all practical applications.

LU FACTROIZATION OR TRIANGULAR FACTORIZATION

* This is one of the sparsity techniques and serves the purpose of reducing the calculation time.

$$
\begin{equation*}
[A]_{n \times n}[x]_{n \times 1}=[B]_{n \times 1} \tag{1}
\end{equation*}
$$

* One way of solving for x is to invert
[A] matrix

$$
\begin{aligned}
& \text { and then multifity it } \log [B] \\
& {[x]=[A]^{-1}[B]}
\end{aligned}
$$

* This Procedure is not recommended because,
(i) Time Jaken will be more.
(ii) Around off errors will be there.
(iii) $[\mathrm{A}]^{-1}$ will be a full matrix: Particularly in case of $\left[Y_{\text {sous }}\right]^{-1}$, so storage requirement will be more.
* For these reasons, we adopt LU factorisation by which all the above mentioned drawbacks are removed. * According to this method, square matrix [A] is factorised into 2 matrices $[L]$ and $[u]$ such that,

$$
[A]=[L][U] .
$$

* L is defined as follows.

$$
[L]=\left[\begin{array}{cccccc}
l_{11} & 0 & 0 & 0 & \ldots & 0 \\
l_{21} & l_{22} & 0 & 0 & \cdots & 0 \\
l_{31} & l_{32} & l_{33} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & & \\
l_{n 1} & i_{n 2} & i_{n 3} & \cdots & \cdots & l_{n n}
\end{array}\right]
$$

* U is defined ar fellows.

$$
[U]=\left[\begin{array}{cccccc}
1 & u_{12} & u_{13} & \ldots & \ldots & u_{1 n} \\
0 & 1 & u_{23} & \ldots & \ldots & u_{2 n} \\
0 & 0 & 1 & u_{34} & \ldots & u_{3 n} \\
\vdots & 0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

where
$[L] \Rightarrow$ Lower Triangular Matrix.
[U] \Rightarrow Upper Jriangular Matrice.

* Equ. (1) gets modified as follow r:

$$
\begin{aligned}
{[L][U][x] } & =[B] \\
{[L][k] } & =[B]
\end{aligned}
$$

* Find [k] by Forward substitution by solving $[L][k]=[B]$
* Solve for [x] by Backward substitution by solving $[U][x]=[k]$.
* Thus, by backward and forward substitution, we get the answer very quickly.
* Let us factorise $[A]$ into $[L] \&[U]$ matrices such that $[A]=[L][U]$.
* The elements of $[L]$ and $[U]$ matrices nay be determined by using the formulae,

$$
\begin{aligned}
& u_{i j}=\frac{\left(A_{i j}-\sum_{k=1}^{i-1} l_{i k} v_{k j}\right)}{l_{i i}} \quad i<j \\
& l_{i j}=\left(A_{i j}-\sum_{k=1}^{j-1} l_{i k} v_{k j}\right) \quad i \geq j .
\end{aligned}
$$

EXAMPLE:
Solve the following Matrix Equation by applying 10 factorization

$$
\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 2 \\
0 & -2 & 3 & 1 & 0 \\
3 & 1 & 0 & -2 & 1 \\
-2 & 3 & 4 & 0 & 1 \\
2 & 0 & 1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
17 \\
19 \\
2 \\
21 \\
19
\end{array}\right]
$$

solution:

$$
\begin{aligned}
& A x=B \\
& L U x=B \\
& u x=k \\
& 1 K=B \\
& \text { Obtain } k \\
& u x=k \\
& \text { Obtain } x
\end{aligned}
$$

Begin with [L] matrix
Consider first column of $[L]$

$$
\begin{aligned}
& L_{11}, L_{21}, L_{31}, L_{41}, L_{51} \\
& l_{i j}=a_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j} . \\
& l_{11}=a_{11}-\sum_{k=1}^{1-1=0} l_{i k} u_{k j}=a_{11}-0=a_{11}=1 \\
& l_{21}=a_{21}-\sum_{k=1}^{1-1=0} l_{i k} v_{k j}=a_{21}-0=a_{21}=0 \\
& l_{31}=a_{31}-\sum_{k=1}^{1-100} l_{i k} u_{k j}=a_{31}-0=a_{31}=3 . \\
& l_{41}=a_{41}-\sum_{k=1}^{1-1=0} l_{i k} v_{k j}=a_{41}-0=a_{41}=-2 \\
& l_{51}=a_{51}-\sum_{k=1}^{1-1=0} l_{i k} u_{k j}=a_{51}-0=a_{51}=2
\end{aligned}
$$

Consider first row of $[\mathrm{U}]$

$$
\begin{aligned}
& u_{11}, u_{12}, u_{13}, u_{14}, u_{15} \\
& u_{i j}=\frac{a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j}}{l_{i 1}} \\
& u_{11}=\frac{a_{11}-\sum_{k=1}^{1-100} l_{i k} u_{k j}}{l_{11}}=\frac{a_{11}-0}{l_{11}}=\frac{a_{11}}{l_{11}}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& U_{12}=\frac{a_{12}-0}{l_{11}}=\frac{a_{12}}{l_{11}}=\frac{0}{1}=0 . \\
& U_{13}=\frac{a_{13}-0}{l_{11}}=\frac{a_{13}}{l_{11}}=\frac{-2}{1}=-2 .
\end{aligned}
$$

$$
\begin{aligned}
& u_{14}=\frac{a_{14}-0}{l_{11}}=\frac{a_{14}}{l_{11}}=\frac{3}{1}=3 \\
& u_{15}=\frac{a_{15}-0}{l_{11}}=\frac{a_{i 5}}{l_{11}}=\frac{2}{1}=2 .
\end{aligned}
$$

SECOND COLUMN OF [L] MATRIX:

$$
\begin{aligned}
& l_{22}=a_{22}-\sum_{k=1}^{2-1} l_{i k} u_{k j}=a_{22}-l_{21} u_{12}=-2-(0)(0)=-2 \\
& l_{32}=a_{32}-\sum_{k=1}^{2-1} l_{3 k} u_{k 2}=a_{32}-l_{31} u_{12}=1-(3)(0)=1 \\
& l_{42}=a_{42}-\sum_{k=1}^{2-1} l_{4 k} u_{k 2}=a_{42}-l_{41} u_{12}=3-(-2)(0)=3 \\
& l_{52}=a_{52}-\sum_{k=1}^{2-1} l_{5 k} u_{k 2}=a_{52}-l_{51} u_{12}=0-(2)(0)=0
\end{aligned}
$$

SECOND ROW OF [U] MATRIX:

$$
\begin{aligned}
& u_{22}=\frac{a_{22}-\sum_{k=1}^{1} l_{2 k} U_{k 2}}{l_{22}}=\frac{a_{22}-l_{21} U_{12}}{l_{22}}=\frac{-2}{-2}=1 \\
& u_{23}=\frac{a_{23}-\sum_{k=1}^{1} l_{2 k} U_{k 3}}{l_{22}}=\frac{a_{23}-l_{21} U_{13}}{l_{22}}=\frac{3-(0)(-2)}{-2}=\frac{-3}{2} \\
& U_{24}=\frac{a_{24}-\sum_{k=1}^{1} l_{2 k} U_{k 4}}{l_{22}}=\frac{a_{24}-l_{21} U_{14}}{l_{22}}=\frac{1-(0)(3)}{-2}=\frac{-1}{2} \\
& U_{25}=\frac{a_{25}-\sum_{k=1}^{1} l_{2 k} U_{k 5}}{l_{22}}=\frac{a_{25}-l_{21} U_{15}}{l_{22}}=\frac{0-(0)(2)}{-2}=0 .
\end{aligned}
$$

THIRD COLUMN OF [L] MATRIX:

$$
\begin{aligned}
l_{33}=a_{33}-\sum_{k=1}^{2} l_{3 k} u_{k 3} & =0-\left[i_{31} u_{13}+i_{32} u_{23}\right] \\
& =0-\left[3(-2)+(1)\left(-\frac{3}{2}\right)\right] \\
& =6+\frac{3}{2} \\
l_{33} & =15 / 2 \\
l_{43}=a_{43}-\sum_{k=1}^{2} l_{4 k} u_{k 3} & =4-\left[l_{41} u_{13}+l_{42} u_{23}\right] \\
& =4-[(-2)(-2)+(3)(-3 / 2)] \\
& =4-\left[4-\frac{9}{2}\right] \\
l_{43} & =\frac{9}{2}
\end{aligned}
$$

$$
\begin{aligned}
l_{53}=a_{53}-\sum_{k=1}^{2} l_{5 k} u_{k 3} & =a_{53}-\left[l_{51} U_{13}+l_{52} u_{23}\right] \\
& =1-\left[(2)(-2)+(0)\left(\frac{-3}{2}\right)\right] \\
& =1+4 \\
l_{53} & =5
\end{aligned}
$$

THIRD ROW OF [U] MATRIX:

$$
\begin{aligned}
& u_{33}=1 \\
& u_{34}=\frac{a_{34}-\sum_{k=1}^{2} l_{3 k} u_{k 4}}{l_{33}}=\frac{a_{34}-\left(l_{31} u_{14}+l_{32} u_{24}\right)}{l_{33}} \\
&=\frac{-2-[(3)(3)+(1)(-0.5)]}{7.5} \\
&=\frac{-2-[9-0.5]}{7.5} \\
& U_{34}=-1.4
\end{aligned}
$$

$$
\begin{aligned}
U_{35}=\frac{a_{35}-\sum_{k=1}^{2} l_{3 k} U_{k 5}}{l_{33}} & =\frac{a_{35}-\left(l_{31} u_{15}+l_{32} U_{25}\right)}{l_{33}} \\
& =\frac{1-[(3)(2)+(1)(0)]}{7.5} \\
U_{35} & =-0.666
\end{aligned}
$$

FOURTH COLUMN of [l] Matrix:

$$
\begin{aligned}
& l_{44}=a_{44}-\sum_{k=1}^{+-1} i_{4 k} U_{k 4}=a_{44}-\left[l_{41} U_{14}+l_{42} U_{24}+l_{43} v_{34}\right] \\
& =0-[(-2)(3)+(3)(-0.5)+(4.5)(-1.4)] \\
& =0-[-6-1.5-6.3] \\
& 1_{44}=13.8 \\
& l_{54}=a_{54}-\sum_{k=1}^{4-1} l_{5 k} U_{k \cdot 4}=a_{54}-\left[l_{51} u_{14}+l_{52} U_{24}+l_{53} U_{34}\right] \\
& =1-[(2)(3)+(0)(-0.5)+(5)(-1.4)] \\
& \text { FOURTH Row of }[U] \text { : } \\
& l_{54}=2 \\
& V_{45}=\frac{a_{45}-\sum_{k=1}^{3} l_{4 k} U_{k 5}}{l_{44}}=\frac{1-\left[l_{41} U_{15}+l_{42} U_{25}+l_{43} U_{35}\right]}{l_{44}} \\
& =\frac{1-[(-2)(2)+(3)(0)+(4.5)(-0.666)]}{13.8} \\
& u_{45}=0.5797
\end{aligned}
$$

FIFTH Column of [L]:

$$
\begin{aligned}
l_{55} & =a_{55}-\left[l_{51} v_{15}+l_{52} v_{25}+l_{53} u_{35}+i_{54} u_{45}\right] \\
& =2-[(2)(2)+(0)(0)+(5)(-0.666)+(2)(0.5797)] \\
l_{55} & =0.1739 .
\end{aligned}
$$

$$
\begin{aligned}
& L=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
3 & 1 & 7.5 & 0 & 0 \\
-2 & 3 & 4.5 & 13.8 & 0 \\
2 & 0 & 5 & 2 & 0.1739
\end{array}\right] \\
& U=\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 2 \\
0 & 1 & -1.5 & -0.5 & 0 \\
0 & 0 & 1 & -1.4 & -0.666 \\
0 & 0 & 0 & 1 & 0.5797 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

FORWARD SUBSTITUTION:

$$
L K=B
$$

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
3 & 1 & 7.5 & 0 & 0 \\
-2 & 3 & 4.5 & 13.8 & 0 \\
2 & 0 & 5 & 2 & 0.1739
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3} \\
k_{4} \\
k_{5}
\end{array}\right]=\left[\begin{array}{c}
17 \\
19 \\
2 \\
21 \\
19
\end{array}\right]} \\
\Rightarrow k_{1}=17 \\
\Rightarrow-2 k_{2}=19 \\
k_{2}=-19 / 2=-9.5 \quad k_{2}=-9.5
\end{gathered}
$$

$$
\begin{array}{r}
\Rightarrow 3 k_{1}+k_{2}+7.5 k_{3}=2 \\
3(17)+(-9.5)+7.5 k_{3}=? \\
k_{3}=-5.267 \\
\Rightarrow-2 k_{1}+3 k_{2}+4.5 k_{3}+13.8 k_{4}=21 \\
-2(17)+3(-9.5)+4.5(-5.267)+13.8 k_{4}=21 \\
k_{4}=7.768
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 k_{1}+5 k_{3}+2 k_{4}+0.1739 k_{5}=19 . \\
& \\
& 2(17)+5(-5.267)+2(7.768)+0.1739 k_{5}=19 \\
& \quad k_{5}=-24.157 \\
& k_{1}=17 \\
& k_{2}=-9.5 \\
& k_{3}=-5.267 \\
& k_{4}=7.768 \\
& k_{5}=-24.157
\end{aligned}
$$

BACKWARD SUBSTITUTION:-

$$
\begin{gathered}
11 x=k \\
{\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 2 \\
0 & 1 & -1.5 & -0.5 & 0 \\
0 & 0 & 1 & -1.4 & -0.666 \\
0 & 0 & 0 & 1 & 0.5797 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
17 \\
-9.5 \\
-5.267 \\
7.768 \\
-24.157
\end{array}\right]}
\end{gathered}
$$

$\Rightarrow x_{5}=-24.157$.
$\Rightarrow \quad x_{4}+0.5797 x_{5}=7.768$
$x_{4}=21.768$
$\Rightarrow x_{3}-1.4 x_{4}-0.666 x_{5}=-5.267$
$x_{3}=9.12$
$\Rightarrow x_{2}-1.5 x_{3}-0.5 x_{4}+0 x_{5}=-9.5$

$$
x_{2}=15.06
$$

$\Rightarrow \quad x_{1}+0 x_{2}-2 x_{3}+3 x_{4}+2 x_{5}=17$ $x_{1}=18.25$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
18.25 \\
15.06 \\
9.12 \\
21.768 \\
-24.157
\end{array}\right]
$$

[3] OPTIMAL ORDERING:

* The Optimal ordering is a process to obtain a new order of rows and columns to be eliminate in the factorization process in such a way to reduce the number of fill-ins.
* In other words, Optimal Ordering refers to renumbering the matrix order so that fill-ins are reduced.
* As the number of non-zero values to be stored in Computer is minimised and hence, the computation time is reduced. Computer Memory is also saved.

TINNEY'S SCHEMES FOR NEAR OPTIMAL ORDERING:
Method (1):

* The factorisation of a row or a column with minimum number of non-zero entries will generate minimum number of fill-ine \& vice-versa.
* In this method, number of non-zero entries at each row \& column are counted.
* Row (or column) with minimum no. of non-zeros is considered as first row (or column).
* The Row (or column) with next feu non-zeros is considered as second row (or column) and so on.
* That is, Rows \& columns are arranged in ascending order based on number of non-zero entries.
* LU factorisation is carried out based on this new order.

Method (2) (Tinney-Walker Method):

* Whose the row with ininimum non-zero entries as first row.
* similarly, select the column with minimum non-zero entries.
* Apply LU factorization (or) simulate the factorization process on the selected row \& column. This may create new fill-ins.
* Uniting the rows \& columns, that are already processed, once again choose the row \& column with minimum no. of non-zero entries accounting the new fill-ins created by factorization process.
* This Process may be repeated till all the rows \& columns are processed.

Method (3):

* Those the row and column that will generate minimum fill-ins.
* Simulate the factorization process in order to. find the fill-ins en each row (or column).
* Once again, Repeat the simulation process for remaining rows, taking into account the fill-ins already generated.
* This Procedure is followed till all rows \& columns are selected.

Procedure for Piney \& Walker Method:

* Jo identify extra fill-ins on account of LU factorisation, we have shortcut procedure or Thumb Rule.
* Extra -fill in should be even number. As the given inatrix is symmetrical matrix, if extra fill-ins come into $y_{i j}$, then one more at $y_{j i}$ (i.e..) for example, $y_{13}=y_{31}$
* We have to see the minimum number of non-zeros (x) (σr) maximum number of zeros (blanks) and take that row as first row. Take the column as first column. Gut that row \& column by a straight line.
* Try to form all possible square or rectangular form from the intersection point of that row \& column.
* Verify all comers of square or rectangle possess the non-zero element.
* If not, put extra fill-ine by \otimes symbol in a square or rectangular corners which are not having non-zero element.
* If all corners of square or rectangle possess non-zero elements, then no need to fill up any: extra fill-ins.

* While coursing non-zero elements, include extra fill-ins also.

$$
\begin{aligned}
& \text { (ii) } x \otimes \times \times \Rightarrow 4 \text { Non-zeros. }
\end{aligned}
$$

* New fill-ins do not exist on cut line.
* The Procedure gets repeated until all rows \& columns are taken into account.
* Count the total no. of extra fill-ins at end \& it is always very less than no. of extra fill-ins without optimal ordering.

			1	2	3	4	5	6	7	8	9	10	11	12	13	14
3	-	1	X	X			X									
5	-	2	X	X	x	X	x									
3	-	3		X	X	X										
6	-	4		x	x	X	x		X		X					
5	-	5	X	X		X	x	X								
5	-	6					x	x					X	X	X	
4	-	7				X			X	X	X					
2	-	8							X	x						
5	-	9				X			X		X	x				x
3	-	10									X	x	x			
3	-	11						x				x	x			
3	--	12						x						X	X	
4	-	13						X						x	X	x
3	--	14									x				X	x

PROBLEM: Perform Optimal Ordering by Tinney-Walker Method-2 for the following Matrix, where \mathbf{X} represents non-zero elements.

			1	2	3	4	5	6	7	8	9	10	11	12	13	14
3	-	1	X	X			X									
5	-	2	x	X	x	X	X									
3	-	3		X	X	X										
6	-	4		X	X	X	X		X		X					
5	-	5	X	x		X	X	X								
5	-	6					x	X					X	X	x	
4	-	7				X			X	X	X					
2	-	8							X	X						
5	-	9				X			X		x	x				X
3	--	10									X	x	X			
3	-	11						x				x	x			
3	--	12						x						X	X	
4	-	13						X						x	x	X
3	--	14									x				x	x

No. of fill-ins: (8)
(1) Row-8, column-8: Two non-zero elementer \rightarrow No fill-ines.
(2) Row-1, column-1 : Three non-zero elementer \rightarrow No fill-iner
(3) Row -3, column-3 : Thre non-zers elements \rightarrow No fill-ins.
(4) Row-10, column-10: Three non-zero elements \rightarrow twoo fill-ines Rav 10 , colum $(9,11)$

$$
[11,9)] .
$$

(5) Row-12, column-12: Three nom-zero elementer \rightarrow No fill-ines
(6) Row-14, column-14: Three non-zero elements \rightarrow Two fill-ine
$[(13, q)$
(7) Row -7, column-7: Four non-zero elements \rightarrow No fill-ins. (8) Row-11, celumn-11: Four non-zero elements \rightarrow Two fill-ines

$[(9,6)$ $(6,9)]$
(9) Row-2, column-2: Five non-zero elementer \rightarrow No fill-ines
(10) Row-13, columin-13: Five non-zero elementr \rightarrow No fill-jins
(11) Row-5, Column-5: Five non-zero elements \rightarrow Two fill-ins $[(4,6)$, $(6,4)]$
(2) Row -4, Column -4 : Seven non-zero elements \rightarrow No fill-ins
(13) Row -6 , column -6 : seven non-zero elements \rightarrow No fill-ins
(14) Row-9, column-9: Eight non-zero elements \rightarrow No fill-ines. OPTIMAL ORDER: $\{8,1,3,10,12,14,7,11,2,13,5,4,6,9\}$.

PROBLEM: Compute the number of fill-ins in the above problem, if we do LU factorization without optimal ordering.

EXAMPLE (2):

For a system shown in figure, using II scheme of optimal ordering, find the number of extra fill-ins that will exist during Triangular factorization before a after optimal ordering.

WITHOUT OPTIMAL ORDER:
(3) fill ins: $(2,3)(3,2)$

$$
\text { No. of fill -ins: } 12
$$

WITH OPTIMAL ORDERING:

optimal ordering $\div\{5,6,2,1,3,4,7\}$
(1) Row. 5, column - 5 \rightarrow Two non-zero elements \rightarrow No fill-ine.
(2) Row -6, column - $6 \rightarrow$ Two non-zero elemsentes \rightarrow No fill-ins
(3) Row r -2 , column $-2 \rightarrow$ Three non-zero elements \rightarrow No fill-ins.
(4) Row -1, column -1 \rightarrow Four non-zero elements $\rightarrow 2$ fill ins $[(4,3),(3,4)]$
(5) Row -3, column - 3 \rightarrow Four non-zero elements \rightarrow No fill ins
(6) Row. - 4, column -4 \rightarrow Five non-zero elements \rightarrow No fill ins
(7) Row - 7, column - 7 \rightarrow No fill ins.

UNIT-III

Load flow or power flow analysis is a computer aided power system analysis to obtain the solution under static operating conditions. This analysis is carried out to determine

1. Bus voltages
2. Line flows
3. the effect of change in circuit configuration
4. the effect of loss of generation
5. economic system generation
6. transmission loss minimisation
7. possible improvement to an existing system by change of conductor size and system voltage.

For load flow analysis, a single phase
of the power network is used since these representation balanced network. and the loads are represented by constant powers. In the at each bus, there are four variables viz.

1. Voltage magnitude
2. Voltage phase angle
3. Real power and
4. Reactive power.

Bus	Specified variables	Computed variables
Slack bus	Voltage magnitude and its phase angle	Real and reactive powers
Generator bus (pb bus)	Magnitudes of bus voltages and real powers and limits on reactive powers	Voltage phase angle and reactive power
Load bus (FQ bus)	Real and reactive powers	Magnitude and phase angle of bus voltages

Out of these four quantities, two of them are specified at each bus and the remaining two are determined fromm the load flow solution. To supply the real and reactive power josses in lines, which will not be known till the end of the power flow solution, a generator bus, called slack or swing bus is selected. At this bus, the generator voltage magnitude and its phase angle are specified so that the unknown power losses are also assigned to this bus in addition to balance of generation if any. Generally, at all other generator buses, voltage magnitude and real power are specified. At all load buses, the real and reactive load demands are specified. The following table illustrates the type of buses and the associated known and unknown variables.

At generates bus, thrmph appropriate conk oxcitabish and voltage regulator devices, it is possible to fix P and $|v|$ and century Q to vary within certain limits wit cenespending changes in δ. Besides cenmpinit Q, it is possible to centre the taps on the oft-nominal sranstumens. With then control parameters, it is boned that a layer oses os feantre voltage profile can be achieved. Thus it is cleon that these is no unique load flew solutim as such but a la ye number os alternative choices ane possible for diberent sets 2 curt pmanueltes. A unique solution can be make by defiuniz a cost or obechrie function such as minimising fuel cen in bammorion losses or both such a formulation is called the optimal loud flew proven

The day.toloy operabmal probleun men as wer voltrys, over frequentry, over wads and so on should be solved very quickly by faking aproperiate contrlaction. mok an seducing zo the generation at sme generater bus and increares the generation at sune othes gercrates bus, suitcting on thunt reacher or caparitur or adyusting the phone shithing bumbomer or thedeing load at suitutte bmes. Thare decirsm con not he dakenk inly on the basis is m-line power flew analysin. 2t is veng clear that perer flow malysin in an importrut analytical ton whech helpr the dempnes in derigning the power hystem to meet the present and future demanots and atso helps in speratini the Pis in an eftivent mouncer.

The load ften phoun of a P.s is desenbed by a sot or alfebsatic nen-linem equations. phox equathin are shed by nunser of alforitumen. smue of the geverally und mellach we

1. Gaum shidal
2. Newton-Paphsm
3. Decmpled $N \sim R$
4. Farst decompled lied flem ate.

The melhen berrically distinguing behreen themsolues in the sate os conveyence, stroge requorement and Hime os comprutasin.

REPRESENTATION - POWER FLOW VARIABLES

Bus Voltage...

$$
V_{i}=\left|V_{i}\right| \angle \delta_{i}=\left|V_{i}\right| e^{j \delta_{i}}=\left|V_{i}\right|\left(\cos \delta_{i}+j \sin \delta_{i}\right)=e_{i}+j f_{i}
$$

Ybus element.....

$$
Y_{i k}=\left|Y_{i k}\right| \angle \theta_{i k}=\left|Y_{i k}\right| e^{j \theta_{i k}}=G_{i k}+j B_{i k}
$$

Bus Current....

$$
I_{i}=\sum_{j=1}^{n} Y_{i j} V_{j}
$$

Bus Power....

$$
S_{i}=P_{i}+j Q_{i}=V_{i} I_{i}^{*}=V_{i} \sum_{i=1}^{n} Y_{i j}^{*} V_{j}^{*}
$$

Hybrid Form....

$$
S_{i}=P_{i}+j Q_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j}\right| e^{j\left(\delta_{i}-\delta_{j}\right)}\left(G_{i j}-j B_{i j}\right)
$$

Separating the real and imaginary parts

$$
\begin{aligned}
& P_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j}\right|\left\{G_{i j} \cos \left(\delta_{i}-\delta_{j}\right)+B_{i j} \sin \left(\delta_{i}-\delta_{j}\right)\right\} \\
& Q_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j}\right|\left\{G_{i j} \sin \left(\delta_{i}-\delta_{j}\right)-B_{i j} \cos \left(\delta_{i}-\delta_{j}\right)\right\}
\end{aligned}
$$

Polar Form.

$$
S_{i}=P_{i}+j Q_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j} Y_{i j}\right| e^{j\left(\delta_{i}-\delta_{j}-\theta_{i j}\right)}
$$

Separating......

$$
\begin{aligned}
& P_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j} Y_{i j}\right| \cos \left(\delta_{i}-\delta_{j}-\theta_{i j}\right) \\
& Q_{i}=\sum_{j=1}^{n}\left|V_{i} V_{j} Y_{i j}\right| \sin \left(\delta_{i}-\delta_{j}-\theta_{i j}\right)
\end{aligned}
$$

$$
S_{i}=P_{i}+j Q_{i}=\sum_{j=1}^{n}\left(e_{i}+j f_{i}\right)\left(G_{i j}-j B_{i j}\right)\left(e_{j}-j f_{j}\right)
$$

Separating......

$$
\begin{aligned}
& P_{i}=\sum_{j=1}^{n} e_{i}\left(G_{i j} e_{j}-B_{i j} f_{j}\right)+f_{i}\left(G_{i j} f_{j}+B_{i j} e_{j}\right) \\
& Q_{i}=\sum_{j=1}^{n} f_{i}\left(G_{i j} e_{j}-B_{i j} f_{j}\right)-e_{i}\left(G_{i j} f_{j}+B_{i j} e_{j}\right)
\end{aligned}
$$

POWER FLOW ANALYSIS

Power flow analysis is the determination of steady state conditions of a power system for a specified power generation and load demand. It basically involves the solution of a set of non-linear equations for the real and reactive powers at each bus.

It is used in the planning and design stages as well as during the operational stages of a power system. Certain applications, especially in the fields of power system optimization and distribution automation, require repeated fast power flow solutions. Due to a large number of interconnections and continuously increasing demand, the size and complexity of the present day power systems, have grown tremendously and it becomes very difficult to obtain power flow solutions, which is ideally suitable for real time applications. The three traditional methods used for power flow are

- Gauss Seidel (GS)
- Newton Raphson (NR)
- Decoupled NR
- FDLF

GS method was one of the most common method in power flow studies. This is the GS expression that may be solved iteratively for the solution of power flow problem. This method is simple, requires less computer memory but this method is slow due to poor rate of convergence, number of iterations increases directly with the system size and choice of slack bus affects the convergence of this algorithm. Because of these drawbacks, this method is not used for present day power systems.

NR method is very powerful technique in solving power flow problem. This is a gradient technique and needs the jacobian matrix to be formed during the iterative process. This Jacobian matrix provides the optimal direction for finding the solution. This method has several advantages. It reliably converges. It is insensitive to selection of slack bus. No of iterations is independent of system size. It requires less no of iterations. But it is very inefficient in the sense that it requires large computer memory and takes large computation time. That is why this algorithm is not suitable for real-time applications.

Simplifications in the jacobian tend to alter the direction, generally increasing the number of iterations. If the simplifications are done properly, an improvement in overall computational performance may be achieved. Whatever be the simplifications made, the final solution should remain unchanged.

There is weak coupling between Real power flow and Reactive power flow in power systems. Based on this weak coupling the real and reactive set of equations are decoupled and the problem is split into two subproblems in FDLF. In this method, the jacobian matrices are made constant and need not be recomputed during the iterative process. It is developed with the following assumptions.

- the voltage magnitudes, V, are close to 1 p.u
- the phase angles, δ, are not large in magnitude
- $\quad r \ll \mathrm{x}$.

This algorithm is fast and requires very less computer memory. This algorithm is predominantly used in the energy management systems, even for real time applications. However, it diverges, if any of the assumptions becomes invalid.

Classification of Buses

Bus	Specified	Computed
Slack	V, δ	P, Q
Generator (PV)	P, V	Q, δ
Load (PQ)	P, Q	V, δ

Example System with Known and Unknown variables

Specified	Slack bus	Generator Buses				Load Buses							
	$\mathrm{V}_{1} \delta_{1}$	V_{2}	V_{3}	V_{4}	V_{5}								
		P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}	P_{9}	P_{10}	P_{11}	P_{12}	P_{13}
Unknown 12		δ_{2}	δ_{3}	δ_{4}	δ_{5}	δ_{6}	δ_{7}	δ_{8}	δ_{9}	δ_{10}	δ_{11}	δ_{12}	δ_{13}
Specified						Q_{6}	Q_{7}	Q_{8}	Q_{9}	Q_{10}	Q_{11}	Q_{12}	Q_{13}
Unknown 8						V_{6}	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}	V_{12}	V_{13}

The haums seidel meltad, which is und to sthe a
Ganss-Seidel method :load thon protem, is an iteratrie afyention for stving a set os non-linear alfebraic equations.
The pertermance eqs of a pauer rostun can be witten as

$$
\begin{equation*}
\left[I_{\text {bus }}\right]=\left[Y_{\text {bus }}\right]\left[V_{\text {bos }}\right] \tag{1}
\end{equation*}
$$

Selecting one of the buses on the retrene bus (usually slack bous), we will get $n b-1$ simultaneons eq도?

The bus loadriy eqs can be unitten as

$$
I_{i}=\frac{P_{i}-j Q_{i}}{V_{i}^{*}} \quad \begin{aligned}
i & =1,2 \ldots n b \\
i & \neq \text { slack hons. }
\end{aligned}
$$

From (1)

$$
I_{i}=\sum_{j=1}^{n b} Y_{i j} \cdot V_{j}
$$

Equating (2) and (3), we get

$$
\frac{P_{i}-j Q_{i}}{V_{i}+}=Y_{i i} V_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n b} Y_{i j} \cdot v_{j}
$$

Reananyein the above

$$
V_{i}=\frac{1}{Y_{i 1}}\left(\frac{P_{i}-j Q_{i}}{V_{i}^{+}}-\sum_{\substack{j=1 \\
j \neq i}}^{n b} Y_{i j} \cdot V_{j}\right) \quad \begin{aligned}
& i=1,2 \ldots n b \\
& i \neq \text { \&lack bus. }
\end{aligned}
$$

If latert availathe voltage is und in R.AS or the dowe equ, we get

The above equation can be solved for bus voltages in on iterative manner. In a load flem pollen, P_{s}^{\prime} at all buses except stacte bus are speatsed. in ins Q_{s}^{\prime} at all loud buns ($P Q$) ane specified. For generator
(N) buses Q_{s}^{\prime} are not speectised. Only its limits ane spentied. Sunni the ituatrie proven, Q for p Q bun must be calculated whin the following eq:. and must be subshintred in the G.S. algorithm.

$$
Q_{i}^{c a l}=\operatorname{Imag}\left(V_{i} \cdot I_{1}^{*}\right)=\operatorname{Imag}\left(V_{i} \sum_{j=1}^{n b} Y_{i j}^{*} \cdot V_{j}^{*}\right)
$$

- generator

Since the voltage at all buses most be mantarined ar $\left|V_{i}\right|^{s p}$, the real and imagineng ports os V_{i}^{k+1} are adjusted as follows.

$$
\delta_{i}^{k+1}=\tan \frac{f_{i}^{k+1}}{e_{i}^{k+1}}
$$

$$
V_{i}^{k+1}=\left|V_{i}\right|^{s p} \cdot \cos \left(\delta_{i}^{k+1}\right)+j\left|V_{i}\right|^{s p} \cdot \sin \left(\delta_{i}^{k+1}\right)
$$

The reachic paves limit os all PV buses ore taken into account by the following logic.
if $Q_{i}^{\text {cal }}>Q_{i}^{\text {mat }}$, set $Q_{i}^{\text {al }}=Q_{i}^{\text {max }}$ if $Q_{i}^{c a l}<Q_{i}^{\min }$, set $Q_{i}^{c a l}=Q_{i}^{\text {min }}$
If any one or the above is sathmed, (ie limits are violated) For a PV bus, then that bus may be treated as a $P Q$ bu and in there is no need hr voltage may, adjustment. If is the subsequent computations, cal does fall within the awailarse reactive parer range, the bus is switched back to a P-V. buns.

Acceleration of Comerfence:-
The G^{-s} algartion convinges slowly beciunc, in a laye network, each ben may be cminected to 3 or 4 othes boses. This reoults in a "weak" matheneatical coupluy of the iteeatrie s chence. So, Accelerabin tednsigues ne und to speed up the comergence. Atter eveny itesation, a cerructorm is applied to each $P Q$ bn soltrge as AMows.

$$
\Delta v_{i}^{k+1}=\alpha \cdot\left(v_{i}^{k+1}-v_{i}^{k}\right)
$$

and new voltage will be

$$
V_{i}^{(k+1)}=V_{i}^{k}+\Delta V_{i}^{k+1}
$$

The acceluation factor' α ' in the abeve equ is empirically determined between 1 and 2 . ie $(1<\alpha<2)$.

Nentm-Raghm mettures
The N-R meltowis is a poureful meltias or shonis a set 2 non-lineen alectrate equaheiss. It werts tasm ant is sure to converge in most ir the cans as campend to $4 \rightarrow s$ meltad

Its anty choubate is the laye reppomement of computas meming, whet can be ever cone kn compaet strage stheme.

In paves flen piblem, the comples bos voltyps of the syperm are to be doternivel in sucte a way that the specibed parus ne satrobed. The real pmess ave specethin at all braes except slack bos $(n-1)$ and reactuie prues m speribed at all load buse (n-m) Therefere, the boad fen protkem is descrbere ung a set 2 afebratic non-linean eppatiois as

$$
\begin{align*}
& p(\delta, v)-p^{\prime p}=0 \\
& Q(\delta, v)-Q^{s p}=0 \tag{1}
\end{align*}
$$

where
$\delta=$ voltap angles at atl buses eacepr shete bus
$v=$ voltap mapirimie ot all load buses. The vollype mupuinte at all pv unses mespeesticl K knawn

$$
\begin{array}{r}
P_{i}(\delta, v)=v_{i} \sum_{j} v_{j}\left[G_{i j} \cos \left(\delta_{i}-\delta_{j}\right)+B_{i j} \sin \left(\delta_{i}-\delta_{j}\right)\right] \\
\quad i=2,3 \ldots n \\
Q_{i}(\delta, v)=v_{i} \sum_{j} v_{j}\left[G_{i j} \sin \left(\delta_{i}-\delta_{j}\right)-B_{i j} \cos \left(\delta_{i}-\delta_{j}\right)\right] \\
i=m+1 \ldots n \\
P_{i}^{\prime p}=\text { specth-1 real paner at bos }-i
\end{array}
$$

It thanle be nored that white compontiong the dowe dunctions, the specitied voltyp mapmimle o pv buss are to be sintstinites in thue n the vanaire $V_{i} ; i=1,2 \ldots \mathrm{~m}$,

The abore equations con be witten is terms s correchion vanatios $\Delta \delta$ and ΔV as

$$
\begin{align*}
& P\left(\left[\delta^{0}+\Delta \delta\right],\left[v^{0}+\Delta v\right]\right)-p^{-p}=0 \tag{2}\\
& Q\left(\left[\delta^{0}+\Delta \delta\right],\left[v^{0}+\Delta v\right]\right)-Q^{s p}=0
\end{align*}
$$

where
δ° and v^{0} are the values os δ and V curaspondinis to milual green and $\Delta \delta K \Delta v$ are ore concechin values suctisnat tae dave equations ne substied

The alare equations can be expandel as Jryfis' senis as toluas.

$$
\begin{aligned}
& P\left(\delta^{\circ}, v^{0}\right)+\left.\frac{\partial P}{\partial \delta}\right|_{\substack{\delta=\delta^{\circ} \\
v=v^{0}}} \Delta \delta+\left.\frac{\partial P}{\partial v}\right|_{\substack{\delta=\delta^{\circ} \\
v=v^{\circ}}} \Delta v+\cdots-P^{s p}=0 \\
& Q\left(\delta^{\circ}, v^{0}\right)+\left.\frac{\partial Q}{\partial \delta}\right|_{\substack{\delta=\delta^{\circ} \\
v=v^{\circ}}} \Delta \delta+\left.\frac{\partial Q}{\partial v}\right|_{\substack{v=v^{\circ} \\
\delta=\delta^{\circ}}} \Delta v+\ldots-Q^{s p}=0
\end{aligned}
$$

Negleotiong the hinks ontes deriuatios, the abore equations can be aritem is matrix forrm is

$$
\left[\begin{array}{ll}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial v} \tag{3}\\
\frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial v}
\end{array}\right]\left[\begin{array}{l}
\Delta \delta \\
\Delta v
\end{array}\right]-\left[\begin{array}{l}
P^{s p}-P\left(\delta^{0}, v^{0}\right) \\
Q^{s p}-Q\left(\delta^{0}, v^{0}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Let

$$
\left[\begin{array}{c}
\Delta p \\
\Delta Q
\end{array}\right]=\left[\begin{array}{l}
P^{s p}-P^{c-1} \\
Q^{s p}-Q^{c q}
\end{array}\right]=\left[\begin{array}{l}
P^{s p}-p\left(\sigma^{0}, v^{0}\right) \\
Q^{s p}-Q\left(\sigma^{0}, v^{0}\right)
\end{array}\right] \text { in ne mism }
$$

64 (3) can then be winttens

In ades to make the jacosian matrix symmetrical, the nbme egn can be mollithel as

$$
\begin{align*}
& {\left[\begin{array}{ll}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial V}(V) \\
\frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial V}(V)
\end{array}\right]\left[\begin{array}{l}
\Delta \delta \\
\Delta V /|V|
\end{array}\right]=\left[\begin{array}{l}
\Delta P \\
\Delta Q
\end{array}\right]} \tag{25}\\
& {\left[\begin{array}{ll}
H & N \\
M & L
\end{array}\right]\left[\begin{array}{l}
\Delta \delta \\
\Delta V /|V|
\end{array}\right]=\left[\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right]} \tag{26}
\end{align*}
$$

if $\quad i \neq j$

$$
\begin{align*}
& H_{i j}=\frac{\partial P_{j}}{\partial \delta_{j}} \quad ; \quad N_{i j}=\frac{\partial P_{i}}{\partial V_{j}}\left|V_{j}\right| \\
& M_{i j}=\frac{\partial Q_{i}}{\partial \delta_{j}} \quad ; \quad L_{i j}=\frac{\partial Q_{i}}{\partial V_{j}}\left|V_{j}\right| \tag{26}
\end{align*}
$$

if $i=j$

$$
\begin{aligned}
& H_{i i}=\frac{\partial P_{i}}{\partial \delta_{i}} \quad, N_{i i}=\frac{\partial P_{i}}{\partial V_{i}}\left|V_{i}\right| \\
& M_{i i}=\frac{\partial Q_{i}}{\partial \delta_{i}} \quad ; \quad L_{i i}=\frac{\partial Q_{i}}{\partial V_{i}}\left|V_{i}\right|
\end{aligned}
$$

Eq.(6) man be splued irewhuly to sharin the land How soluthin. Convergenve check is canied ent using $\triangle P$ and $\triangle Q$ vectors.

Dunnis the iteratrie procen, it any s one reactric power generation at PV lases violates the reactrie pence, linit, then the reactivie perver generation at that bno is set to the roopective limis and den that pantimbly bm is treaped as a laved bus in the subsequent itenachins. this obvously athes the jpeoldan matrix and the cerrespenking mismatch and correction vectors as

$$
\left[\begin{array}{lll}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial v}|v| & \frac{\partial P}{\partial v^{\prime}}\left|v^{\prime}\right| \\
\frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial v}|v| & \frac{\partial Q}{\partial v^{\prime}}\left|v^{\prime}\right| \\
\frac{\partial Q^{\prime}}{\partial \delta} & \frac{\partial Q^{\prime}}{\partial v}|v| & \frac{\partial Q^{\prime}}{\partial v^{\prime}}\left|v^{\prime}\right|
\end{array}\right]\left[\begin{array}{l}
\Delta \sigma \\
\frac{\Delta v}{\Delta v} /|v| \\
\Delta v /\left|v^{\prime}\right|
\end{array}\right]=\left[\begin{array}{c}
\Delta P \\
\Delta Q \\
\Delta Q^{\prime}
\end{array}\right]
$$

where
$\Delta Q^{\prime}=$ mismitch reactic power vector os linit violased generatros
$\Delta v^{\prime}=$ comectrons or voltage mupitude or limis viobsed generatros
$3^{\text {rd }} \mathrm{rm}$ and 3^{rd} cot or jucobran mahix repesents the adesimal derivatios cormponding to the kinss vrolehed geveraters

Alyonthun

1. From Yous mario
2. Inssilige all bus vottrye onymindes and angles
3. Calculate mismatch real pores $[\Delta p]$ at all buses excepts stacte kn
4. Calculate the verchic perver generations at all PV buses and check for Q - limit violations. If any of the venerator exceeds the limit, set the value to is reopechice limit and treat kin in a $P Q$ bn
5. Calunlate mismatch reactive perven $\left[\begin{array}{l}\triangle Q \\ \triangle Q\end{array}\right]$ at all loud buses and limit violated pi buses.
6. Check for convergence. ie, check whether all the elements in $[\Delta P]$ and $\left[\begin{array}{l}\Delta Q \\ \Delta Q^{\prime}\end{array}\right]$ ane within a specisised toterence whee. If cmeyged, soto step 10
7. Form the jacobsen matrix taking int accost the generator veathie parer linist violubins.
8. Shove Eq. (8) fer $\left[\begin{array}{l}\Delta \delta \\ \Delta v / i v \mid \\ \left.\Delta v / i v^{\prime}\right)\end{array}\right]$ and update the vectors,

$$
\begin{aligned}
& V_{i}^{\text {new }}=V_{i}^{o l d}+\frac{\Delta V_{i}}{\left|V_{i}\right|}+V_{i}^{o l q} \\
& \delta_{i}^{\text {new }}=\delta_{i}^{\circ 0 l d}+\Delta \delta_{i}
\end{aligned}
$$

9. note step (3)
10. Estate Calculate all line flews, slack bis pares and rerctivie power generation at $A M$ generator bones and pint the results.

Flow Chart of NR Method

Decoupled $N-R$ method :-
In any practical parer mptems? the changes in veal panel is mare dependent on the changes in voltage angles at vavions bums than the changes in voltage mapintudes; and the chomps in reacture parer at a bon is mere dependent on the changes in voltage magnitudes at vain buses them the change in voltage angles. Thus, there is a daily good decouptriy betw. The actrie power and reactive parer this decoupling feature can be used on somptitymis the $N-R$ ayevithm by neplecting $[N]$ and $[M]$ in the jacosoron matrix.

$$
\begin{align*}
& {\left[\begin{array}{l}
\Delta P \\
\Delta Q
\end{array}\right]=\left[\begin{array}{ll}
H & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{c}
\Delta \delta \\
\Delta v /|V|
\end{array}\right]} \\
& {[\Delta \delta]=[H]^{-1}[\Delta P]} \tag{3}\\
& {\left[\frac{\Delta V}{|V|}\right]=[L]^{-1}[\Delta Q]} \tag{24}
\end{align*}
$$

Equs. (3) \& can be solved simultameanry at each iteration. A better approach is to firs sure eqn (3) for $\Delta \delta$ and un the updated δ to constmet and tue eque. For ΔV. This wroth results in proves cenveyence than the simultaneous mode.

Advantages

1. Menes requirement is reduced compare to formal $N-R$ mellow
2. Though the number os iterations nicrean, the overall computation is reduced than the former $N-R$ mellow d.
fars Decompled Lond fiar method:-
The FDLF meltiod is very fart melthin is obtainins load tem solutim. In seris meltuod, both the speed as well as the sparsita re exploited. Ahis in actually an eatersims is $N-R$ mettond.

The N-R mellaon is

$$
\left[\begin{array}{l}
\Delta p \\
\Delta Q
\end{array}\right]=\left[\begin{array}{ll}
H & N \\
M & L
\end{array}\right]\left[\begin{array}{c}
\Delta \sigma \\
\Delta V / M
\end{array}\right]
$$

the decugrled $N-R$ meltool is

$$
[\Delta P]=[H][\Delta \delta]
$$

$$
[\Delta \Delta]=[L][\Delta v /|v|] \text {. bared in decupreiny }
$$ between real and reachuie pares. This decoupled $N-R$ melliod is furtion simgithed vsini the truanim asomptions.

With then asmuption, the jacotrian terms coni be wulter as
$p \neq q$

$$
H_{p q}=L_{p q}=-\left|V_{p}\right|\left|V_{q}\right| B_{p q}
$$

$p=q$

$$
H_{p p}=L_{p p}=-B_{p p}\left|V_{p}\right|^{2}
$$

$$
\begin{aligned}
& \cos \left(\delta_{p}-\delta_{q}\right) \bumpeq 1.0 \quad \begin{array}{c}
\text { anden } \\
\text { and }
\end{array} \\
& a_{p q} \cdot \sin \left(\delta_{p}-\delta_{q}\right) \ll B_{p q} \text { minn ane. } R_{m} \ll x_{p q} \text {. }
\end{aligned}
$$

with then armuptian, esen can bee written as

$$
\begin{align*}
& {[\Delta p]=\left[\begin{array}{lll}
\left|v_{p}\right| & \left|v_{q}\right| & B_{p q}^{\prime}
\end{array}\right][\Delta \sigma]} \tag{b}\\
& {[\Delta Q]=\left[\begin{array}{lll}
\left|v_{p}\right| & \left|v_{q}\right| & B_{p q}^{\prime \prime}
\end{array}\right]\left[\Delta v / \mid v_{1}\right]}
\end{align*}
$$

where $B_{p q}^{\prime}$ and $B_{p q}^{\prime \prime}$ are the elements or $[-B]$ matux
The final FDLF affaritam can be achieved hy the bollami simploticultoms.
(1) neglecting the elements that predominentaly affeet reactuie paver thews, such as shunt reactances, tap chanymis banstanas ofe, while formmiy B^{\prime} marix
(2) neglectmis the elememts that pedominentaly afteet real pavertemens mech as pham sluittrin transtomen, while formmir $B^{\prime \prime}$ makox.
(3) neflectivis the sevies ventance in calculation the elements or B^{\prime} matix.
(4) dividuns each of the erne. (b) bro $\left[V_{p}\right]$ and settmi $V_{a}=1 \mathrm{pu}$.

With then asumptines, the final FDLF eqn becanes

$$
\begin{align*}
& {\left[\frac{\Delta P}{|v|}\right]=\left[B^{\prime}\right][\Delta \delta]} \tag{7}\\
& {\left[\frac{\Delta Q}{|v|}\right]=\left[B^{\prime \prime}\right][\Delta v]} \tag{8}
\end{align*}
$$

- bott $B^{\prime} \times B^{4}$ are real and spank and have structures os $[H]$ and $[L]$ vespecturely.
- smie they contain wetware admittance, they one constant and need to be evaluated entry once at the beginning os the study.
- bott $B^{\prime} \times B^{\prime \prime}$ are symmetice, it phon shutting tranitumens ore wis present.

The equations (7) x (8) are rived altematuchy swans emplequig the mort recent voltage values. i.e. He equ (7) is shred for $[\Delta \delta]$ and the updated value $s[\delta]$ is and to shive equ (8) for $[\Delta v]$. Sepenarta convergence tests are applied for the real and reactive parer mismatches.

Q-lomits violations:-

- Q limit viulathm may be taken inti account similar to formal $N-R$ melted.
- it reactive parer at any generator bus violates, the violated bus is treated as $P Q$ bus by setting the reachie generation to is respechic limit and the bus is treated as load bus; and alter the B^{4} mania aceordiniply.
featuen:-
- ir takes more $n \div$ or itacrastrus.
- id is mare reliatrle
- A requires len Componter memaia
- 22 s farther
- it fain it $x \gg$ s tram. Unis are wo r sathitice.

Flow Chart of FDLF Method

(4) For the syptem shown below, cany ant me itection st the FDLF and eance fird ont voltyes and angles at all the baxs.

Bm Data: (Illquanbitis in per unit)

Soln

Slep:

$$
\begin{aligned}
& \text { Solm } \\
& \text { (w/0 Mine chaymin } \\
& \text { Yadmitance) }
\end{aligned}=\left[\begin{array}{ccc}
-j 15 & j 10 & j 5 \\
j 10 & -j 15 & j 5 \\
j 5 & j 5 & -j 10
\end{array}\right] ; B^{\prime}=\left[\begin{array}{cc}
15 & -5 \\
5 & -10
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Ybin }_{\text {(with Mi chaymy. }}^{\text {admittimu) }}
\end{aligned}=\left[\begin{array}{ccc}
-j 14.975 & j 10 & j 5 \\
j 10 & -j 14.975 & j 5 \\
j 5 & j 5 & -j 9.97
\end{array}\right]=B^{\prime \prime}=[9.97]
$$

sxp! 2

$$
[v]=\left[\begin{array}{l}
1+j 0 \\
1.05+j 0 \\
1+j 0
\end{array}\right]=\left[\begin{array}{c}
1 \angle 0^{\circ} \\
1.05 \angle 0^{\circ} \\
1 \angle 0^{\circ}
\end{array}\right]
$$

out: 3

$$
\frac{\Delta P_{2}}{V_{2}}=\frac{4.52}{1.05}=4.3
$$

$$
\Delta P_{3}=P_{3}^{s p}-P_{3}^{c /}=-3.64-0=-3.64
$$

$$
\frac{\Delta P_{3}}{v_{3}}=\frac{-3.64}{1}=-3.64
$$

where

$$
\text { where } \begin{aligned}
P_{3}^{4}= & v_{3} v_{1} y_{31} \cos \left(\delta_{3}-\delta_{1}-\theta_{31}\right) \\
& +v_{3} v_{2} y_{32} \cos \left(\delta_{3}-\delta_{2}-\theta_{32}\right) \\
& +v_{3}^{2} y_{33} \cos \left(\delta_{3}-\delta_{3}-\theta_{33}\right) \\
& =0| | \begin{array}{|ll}
\text { as } \\
\text { and } \delta_{s}^{\prime}=0 \\
\text { and } \theta_{s}^{\prime}=90^{\circ}
\end{array}
\end{aligned}
$$

step:4

$$
\begin{aligned}
& {\left[\frac{\Delta Q}{|V|}\right]=\left[\frac{\Delta Q_{3}}{V_{3}}\right]} \\
& \Delta Q_{3}=Q_{3}^{s p}-Q_{3}^{c_{3}}=-0.54-(-0.28)=-0.26 \\
& \frac{\Delta Q_{3}}{v_{3}}=\frac{-0.26}{1}=-0.26
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{3}^{c_{4}}= & v_{3} v_{1} y_{31} \sin \left(\delta_{3}-\delta_{1}-\theta_{31}\right) \\
& +v_{3} v_{2} y_{32} \sin \left(\delta_{3}-\delta_{2}-\theta_{32}\right) \\
& +v_{3}^{2} y_{33} \sin \left(\delta_{3}-\delta_{3}-\theta_{33}\right) \\
= & 1 \times 1 \times 5 \times \sin (-90) \\
& +1 \times 1.05 \times 5 \times \sin (-90) \\
& +1^{2} \times 9.97 \times \sin (+90)=-0.28
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{\Delta P}{|v|}\right]=\left[\begin{array}{l}
\Delta P_{2} / V_{2} \\
\Delta P_{3} / V_{3}
\end{array}\right]} \\
& \Delta P_{2}=P_{2}^{\text {sp }}-P_{2}^{\text {al }}=[5.32-0.8]-0=4.52 \\
& \text { where } \\
& P_{2}^{c o}=V_{2} V_{1} Y_{21} \cos \left(\delta_{2}-\delta_{1}-90\right) \\
& +V_{2}^{2} Y_{22} \cos \left(\delta_{2}-\delta_{2}-90^{\circ}\right) \\
& +v_{2} v_{3} V_{23} \cos \left(+\delta_{2}-\delta_{3}-90^{\circ}\right) \\
& =0.0
\end{aligned}
$$

Ske:5 Q-hemint viduhan

$$
Q_{\text {in }} \leqslant Q_{a} \leqslant Q_{m \times x} \quad ; \quad 0 \leqslant Q_{a}^{2} \leqslant Q_{m x}
$$

$$
\begin{aligned}
& Q_{2}^{c_{1}}= v_{2} v_{1} y_{21} \sin \left(\delta_{2}-\delta_{1}-\theta_{21}\right)+v_{2}^{2} \cdot y_{22} \sin \left(-\theta_{22}\right) \\
&+v_{2} v_{3} y_{23} \sin \left(\delta_{2}-\delta_{3}-\theta_{23}\right) \\
&= 1.05 \times 1 \times 10 \sin (-90)+1.05^{2} \times 14.945 \times \sin \left(+90^{\circ}\right) \\
&+1.05 \times 1 \times \sin (-90)= \\
&=-105+1651-5.25 \\
&=0.76
\end{aligned}
$$

$$
Q_{4}^{2}=0.76+0.1=0.86 \mathrm{ph} .
$$

locel land.
$Q a^{2}$ is withsin tue eimib. So, there is no need to modity

$$
B^{A} \text { and }\left[\frac{\Delta Q}{v}\right]
$$

stup 6 conveygence check.
Not converged as the values in $\frac{\Delta P}{V} \times \frac{\Delta Q}{V}$ ne nst
$58+17$
Compnite $\Delta \delta \times \Delta V$

$$
\begin{aligned}
& \Delta \delta=\left[\begin{array}{ll}
0.08 & 0.04 \\
0.04 & 0.12
\end{array}\right]\left[\begin{array}{c}
4.3 \\
-3.64
\end{array}\right]=\left[\begin{array}{c}
0.1984 \\
-0.2648
\end{array}\right] \\
& \Delta V=[0.1][-0.26]=-0.026
\end{aligned}
$$

shep: 8 update $v x$ of

$$
\begin{aligned}
& {[\delta]=\left[\begin{array}{l}
\delta_{2} \\
\delta_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0.1984 \\
-0.2648
\end{array}\right]=\left[\begin{array}{c}
0.1984 \\
-0.264 \mathrm{r}
\end{array}\right]} \\
& {[v]=\left[v_{3}\right]=[1]+[-0.026]=0.974}
\end{aligned}
$$

UNIT-IV SHORT CIRCUIT STUDIES

Shot Cirmit Analyyin

Assumptians Sn thast cirneit studies, a number is anumptuans we made to sednce the compleaits os the protem. In goned sufficient accurany is the unth is shtacied with there aromppors. The unvons mumoptian the as frllens.

$$
\begin{align*}
& \text { Dunay fault, the bos voltogn dhep very Lav and the } \tag{1}\\
& \text { coments draum by the loads can be uglested in } \\
& \text { comparison to fault ounents. So all loads, linic } \\
& \text { chayging capacitances, and other stumt convedions ot } \\
& \text { the ground are ugleeted. }
\end{align*}
$$

(2) All tap changeny trontanes are asoumed to be eet at theis nominal tapr. This vanithes the shunt convection os the trantrones and mby the serics reactance is contiderd.

$$
\begin{align*}
& \text { The generater is represented bs a } \tag{3}\\
& \text { voltage somce in tersis with a the } \\
& \text { reactance which is taken is the. } \\
& \text { subbransent or brumsent reactance. }
\end{align*}
$$

(4) If the resitames of the tranmosion lines, ne maller than the reactances by a factor of six or mere, the resstanues me nellected. Fer luith voltage systems

$$
x / R \geqslant 6 \text { and hence } R \text { is neplected. }
$$

Symmetrical shat cirmit analyin:
Let the trammom netrume cassist os ' n ' uncs eacluding the ground bm, deunted by 0 . The tist ' m ' buns ne armuld as the generater boses. By mumeporm, sel taex generohr willaps are asound to be equal. So, the generatrs are nyomented ins a simple gonenor comected betw. The fretitions node O^{\prime} and goound 0. ns tham is Aji. 2 .
fort comsides $V_{0}{ }^{q} \dot{b}$ sharred. Then An the uoulting parsive netrict, Zims can be eltanued as

$$
V_{m m}=Z_{m m} \cdot I_{m n} \cdot 2 \text { (1) }
$$

Now nibadere the veltage sounce $V_{0}{ }^{a}$ Letw. O' and 0 . Now, madisied n-pert Lecmphii is strand on addaiy $v_{0}{ }^{a}$
to ale the equations to all the equations.

$$
\begin{align*}
& V_{\text {bus }}=\text { Z bono } \cdot I_{\text {bno }}+b \cdot V_{0}^{a} \tag{20}\\
& \text { where } b=[1,1 \ldots, 1]^{n}
\end{align*}
$$

cax: : 3申 to ground tault - trult in impedance form :-

Smppese the faut ocems at the $p^{\text {th }}$ lons. Let the fawlt impedance be Z_{f} and the fantied neturnk is desuribed lay

$$
\begin{equation*}
V_{F}=Z_{f} \cdot I_{f} \tag{3}
\end{equation*}
$$

The canshails behw. The vauntles
 of the fault impedence and port vamathes we written by mopection as

$$
\begin{equation*}
I_{f}=-I_{p}(f) ; V_{f}=V_{p}(F) ; \quad I_{i}(F)=0 \quad i=1,2 \ldots n ; i \neq P \tag{4}
\end{equation*}
$$

where $V_{p}(p)$ and $I_{p}(f)$ ane the $p^{\text {th }} \mathrm{bm}$ voltage x cument eopecturely.
Ay capanking eq- (2), we get

$$
\begin{gather*}
V_{1}(F)=Z_{11} I_{1}(f)+\cdots+Z_{1 p} I_{p}(F)+\cdots+Z_{\ln } I_{n}(F)+V_{0}^{a} \\
V_{2}(F)=Z_{21} I_{1}(F)+\cdots+Z_{2 p} I_{p}(F)+\cdots+Z_{2 n} I_{n}(F)+V_{0}^{a} \tag{25}\\
\vdots \\
\vdots \\
\vdots \\
V_{p}(F)=Z_{p 1} \cdot I_{1}(F)+\cdots+Z_{p p} \cdot I_{p}(F)+\cdots+Z_{p n} \cdot I_{n}(F)+V_{0}^{a} \\
\vdots \\
\vdots \\
V_{n}(F)= \\
\vdots \\
Z_{n 1} \cdot I_{1}(F)+\cdots+Z_{n p} \cdot I_{p}(F)+\cdots+I_{n n} \cdot I_{n}(F)+V_{0}^{a} .
\end{gather*}
$$

Substituting the relahans (3) k (4) in the $p^{\text {th }}$ equation of (5), we get

$$
\begin{align*}
Z_{F} \cdot I_{F} & =-Z_{P P} \cdot I_{F}+V_{0}^{a} \\
I_{F} & =\frac{V_{0}^{a}}{Z_{P P}+Z_{F}} \tag{6}\\
V_{F} & =V_{P}(F)=Z F \cdot I_{F}=Z_{F} \cdot \frac{V_{0}^{a}}{Z_{P P}+Z_{F}}
\end{align*}
$$

The other bus voltafs are obtanid trme the seot of the equs, in equ.(5)

$$
V_{i}(F)=V_{0}^{a}-Z_{i p} . I_{F} \quad \begin{align*}
& i=1,2, \ldots . n \tag{28}\\
& i \neq p .
\end{align*}
$$

This determmies all bos voltages is the spotens, which in tum woll deternie the enis coments in all the lines by elementary application os ohm's law.
care ii 3ϕ to ground fault - fault in admittance ferm
Let the foult-admittance be Y_{F} and the taulted netuork is desuribed by

$$
\begin{equation*}
I_{F}=Y_{F} \cdot V_{F} \tag{29}
\end{equation*}
$$

Substinutini (9) $x \oplus$ is the $p^{\text {th }}$ equatrm $\%$ (5), we get

$$
\begin{align*}
V_{F}=V_{P}(F) & =Z_{P P} \cdot I_{P}(f)+V_{0}^{a} \\
V_{F} & =Z_{P P}\left(-Y_{f} \cdot V_{f}\right)+V_{0}^{a} \\
V_{f} & =\frac{V_{0}^{a}}{1+Z_{P P} \cdot Y_{f}} \tag{210}
\end{align*}
$$

$$
\begin{equation*}
I_{f}=Y_{f} \cdot V_{F} . \tag{II}
\end{equation*}
$$

The olthes bus voltages can be obtainied womi eq\% (8).
care ï̈ 3ϕ symmetsical fants-not moolunis ground.
Snice there is no impedance descriptim for this fauct, we can represent the fauts by (H) ve sequence admitance and equs (9), (10) and (11) can be und to canyant the fount analysis.

The positive sequence netwate os a serrea-bus power system is sham in Hy . For a symmehical 3ϕ to zoo and fouls with the fault $10.1 \mathrm{p} \cdot \mathrm{u}$. Find
for faults at bums 1,2 and 3 . For faults at bus 1 , find all bors voltaps and uni currents. Assume $V_{0}{ }^{a}=1+9^{0}$.

While forming the Yous matsu and also in all the calculations, we need not pine put ' j '. Maybe in the final seats, we can put' ' j ' appropriately.
$\left[Y_{\text {bio }}\right]=\begin{array}{lll}1\left[\begin{array}{lll}A 24.1923 & B^{-12.5} & C^{-7.6923} \\ -12.5 & E 45.83 & F \\ -33.33 \\ x^{-7.6923} & y^{-33.33} & M^{46.0223}\end{array}\right]\end{array}$

$$
[z]=\left[\begin{array}{lll}
0.1274 & 0.1061 & 0.0981 \\
0.1061 & 0.1345 & 0.1151 \\
0.0981 & 0.1151 & 0.1215
\end{array}\right]
$$

Fault at bus (1)
$I_{F_{1}}=\frac{V_{0}{ }^{4}}{Z_{P P}+Z_{F}}=\frac{1}{0.1274+0.1}=4.3995=-j 4.3995$
$I_{1}(\epsilon)=j 4.3995$
fault at bon (2)
$I_{f_{1}}=\frac{1}{0.13+5+0.1}=4.2644=-342644$
$I_{2}(E)=J 42644$.
fault of bus 3:

$$
\begin{aligned}
& I_{f 3}=\frac{1}{0.1215+0.1}=4.5147=-j 4.5147 \\
& I_{3}(F)=-I_{E_{3}}=j 4.5147
\end{aligned}
$$

Voltages at all buses, when fruatt is at bus (1)
voltige at taultad bus

$$
V_{F_{1}}=V_{1}(F)=I_{F_{1}} * Z_{F}=4.3995 \times 0.1=0.44 \mathrm{p.4} .
$$

volinge is all oltan bums

$$
\begin{aligned}
& V_{2}(f)=V_{0}^{a}-Z_{21} \cdot I_{f 1}=1-0.1061 * 4.3995=0.5334 \\
& V_{3}(f)=V_{0}^{a}-Z_{31} \cdot I_{f 1}=1-0.0981 * 4.3995=0.5686 .
\end{aligned}
$$

Cunents thouph the transnanion lives :-

$$
\begin{aligned}
& I_{i j}=\frac{V_{i}-V_{j}}{x_{i j}} \\
& I_{12}=\frac{0.44-0.5334}{0.08}=-1.1675=j 1.1675 \\
& I_{13}=\frac{0.44-0.5686}{0.13}=-0.9892=j 0.9892 \\
& I_{23}(\text { line-1 })=I_{23}(\text { lnie. })=\frac{0.5334-0.5686}{0.06}=-0.5867 \\
&
\end{aligned}=j 0.5867 . \mathrm{l} .
$$

Generater cuments :-

$$
\begin{aligned}
& I_{u_{1}}=\frac{v_{0}^{a}-v_{1}}{x_{g_{1}}}=\frac{1-0.44}{0.25}=2.24=-j 2.24 \mathrm{p} .4 \\
& I_{u_{3}}=\frac{1-0.5681}{0.2}=2.1570=-j 2.1570 \mathrm{p} .4
\end{aligned}
$$ bus woltags and generater coments when a 3ϕ to gooud fanct with $z_{p}=j 0-1 \mathrm{p} \cdot \mathrm{h}$ occums at bus (2)

Soln

cofactor $=\left[\begin{array}{lll}548.6129 & 465.2794 & 402.7794 \\ & 621.8008 & 475.2429\end{array}\right] \quad|\Delta|=4398.9431$
$[$ Zons $]=\begin{array}{lll}1 \\ 2\end{array}\left[\begin{array}{lll}0.1247 & 0.1058 & 0.0916 \\ 0.1058 & 0.1414 & 0.1080 \\ 0.0916 & 0.1080 & 0.1204\end{array}\right]$

Fault at bors 2 will $Z_{f}=j 0.1$

$$
\begin{aligned}
& I_{f_{2}}=\frac{1}{0.1414+0.1}=4.1425=-j 4.1425 \\
& V_{2}=I_{f_{2}} * Z_{f}=4.1425 * 0.1=0.4143 \\
& V_{1}=1-0.1058 * 4.1425=0.5617 \\
& V_{3}=1-0.1080 * 4.1425=0.5526
\end{aligned}
$$

Geveratr coments

$$
\begin{aligned}
& I_{u 1}=\frac{1-0.5617}{0.23}=1.9057=-j 1.9057 \\
& I_{43}=\frac{1-0.5526}{0.2}=2.237=-j 2.237
\end{aligned}
$$

Thanmonion hie flaws:

$$
\begin{aligned}
& I_{12}=\frac{0.5617-0.4143}{0.06}=1.8426=-j 1.8425 \\
& I_{13}=\frac{0.5617-0.5526}{0.15}=0.0607=-j 0.0607 \\
& I_{32}=\frac{0.5526-0.4143}{0.06}=2.3050=-j 2.3050 .
\end{aligned}
$$

Unsymmethical fault Alvalymin womi Symmetrical components :-

Cansider a geneal paver netuolk shown in fig 1 . gt in anomed dent a ruunt bye os fonit occus at pouit p in tee stromen, $\infty \hat{a}$ reonet of which coments IT, I. ${ }^{b}$, I ${ }_{f}^{2}$ thew out ot the sprotion and $v_{p}^{a}, v_{p}^{b}, v_{p}^{c}$ are veltopes of lince a, b, c with sopest to ground.

Fig:1 Agereral paver rortiom At thos p, the putants selvelitape $\left[\begin{array}{c}0 \\ i_{3} \\ 0\end{array}\right]^{012}$ is the open circunted thevenis' voltage and trese impectance viened at pouit ' p ' $\left[\begin{array}{lll}Z_{p r}^{0} & & \\ & z_{n r}^{\prime} & \\ & & z_{p p}{ }^{2}\end{array}\right]$ is the dheremin's impelance. Then, the thenemon's equintent cet at taust pairt ' P ' is repuocuted it hog. 2 . From there nemores, the voltage at polist ' p ' can be unitten as

$$
\begin{aligned}
& v_{p}^{0}=0-z_{p p}^{0} \cdot T_{p}^{0} \\
& v_{p}^{\prime}=\sqrt{3}-z_{p p}^{1} \cdot T_{p}^{1} \\
& v_{p}^{2}=0-z_{p p}^{2} \cdot r_{p}^{2}
\end{aligned}
$$

it can be written in mathix form as
 pouit ' p '.

In the abore uqu, the untinans one $V_{p}^{0 / 2}$ and $I_{p}^{0 / 2}$. Depending upon the type of fruelt, the sequence network may be appropuatly convected and the unboun paramelas con then be easly computed. The vavion tupes 1 unsymmetricel foults MC

1. Smple lnie to ground frutt (SLG)
2. Lini to line foult (LL)
3. Dowble lini to ground frult. (LLG)

SLG drult:-
(P)

Fig: 3 SLa fault

Fig: 4 . Connechan or sequence netwotes for SLG foult.

Let bee foult impedance be Z_{F}. Then the sequence networke can be cornected as thom in frg. 4 . The fault cuneut at froutred bons ' p ' can be written as

$$
\left[\tilde{J}_{f}^{012}\right]=\left[\begin{array}{l}
I_{p}^{0} \tag{22}\\
I_{p}{ }^{\prime} \\
I_{p}{ }^{2}
\end{array}\right]=\frac{\sqrt{3}}{Z_{p p}^{0}+Z_{p p}{ }^{1}+Z_{p p}{ }^{2}+3 \cdot Z_{f}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The funtt bus voltapn con be computed by equ (1) que voltays of all otter bums can be computed by the follounis ern

$$
\left[V_{q}^{012}\right]=\left[\begin{array}{l}
V_{q}^{0} \tag{23}\\
V_{q}^{\prime} \\
V_{q}^{2} \\
V_{q}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{lll}
Z_{p q} & & \\
& z_{p q} & \\
& & z_{p q}^{2}
\end{array}\right]\left[\begin{array}{l}
I_{p}^{0} \\
I_{p}^{\prime} \\
I_{p}^{2} \\
I_{p}^{2}
\end{array}\right]
$$

LL tault :-

the fauts cument at trutted ins can be unitmas

$$
\left[I_{T}^{012}\right]=\left[\begin{array}{c}
I_{p}{ }^{0} \tag{24}\\
I_{p}^{\prime} \\
I_{p}^{2}
\end{array}\right]=\frac{\sqrt{3}}{Z_{p p}^{\prime}+Z_{p p}^{2}+Z_{f}} \cdot\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

eqn (1) and (3) mans be uned to calculate the ben voltreps under fault condition.

LLG fault:-

$$
\begin{aligned}
& I_{p}^{\prime}=\frac{\sqrt{3}}{Z_{p p}^{\prime}+\left(Z_{p p}^{2} \| Z_{p p}^{0}+3 Z_{f}\right)} \\
& I_{p}^{2}=-T_{p}^{\prime} * \frac{\left(Z_{p p}^{0}+3 Z_{p}\right)}{Z_{p p}^{2}+\left(Z_{p p}^{0}+3 Z_{f}\right)} \\
& I_{p}^{0}=-T_{p}^{\prime} * \frac{Z_{p p}^{2}}{z_{p p}^{2}+\left(z_{p p}^{0}+3 Z_{f}\right)}
\end{aligned}
$$

Zero Sequence Equivalent Circuits of Three-Phase Transformers

SYMBOLS	CONNECTION DIAGRAMS	ZERO SEQUENCE EQUIVALENT CIRCUITS
$\begin{aligned} & \left.\frac{P\}}{\}}\right\} \\ & \frac{\pi}{\tilde{K}} Y \end{aligned}$		
$\begin{gathered} P\}\} Q \\ Y \triangleright \end{gathered}$		
$\begin{gathered} P\}\{Q \\ \Delta \Delta \end{gathered}$		

Convasion of Sequence quantities inter phase quantities．
The sequence components can be converted into phone components by using Transformation matrix．Ts．

$$
\begin{aligned}
& T_{s}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right] \\
& {\left[I^{a b c}\right]=\left[T_{s}\right]\left[I^{012}\right]} \\
& {\left[V^{a b c}\right]=\left[T_{s}\right]\left[V^{012}\right]}
\end{aligned}
$$

$-0.5-j 0.866$
a^{2}

Problem：－For the system shown in Ry，calculate the taut concur， and bus voltage for the follemin faults
（a）sips lin to ground sous
Assume the frit impedance $z_{f}=0$ ．and fonts occurs at ban 3.
禹乐
tue sea－neturle

	x^{0}	x^{1}	x^{2}
$厶_{1}$	0.05	0.1	0.1
$厶_{2}$	0.025	0.05	0.05
T_{1}	0.05	0.05	0.05
T_{2}	0.025	0.025	0.025
All hies	0.2	0.1	0.1

$$
\begin{aligned}
& \text { cofactr }=\left[\begin{array}{lll}
\text { EMYF } & D M X F & D Y X E \\
566.66 & 300 & 433.3 \\
6 M Y C & A M \times C & A Y \times B \\
300 & 433.2 & 366.6 \\
B F E C & A F D C & A E D B \\
433.3 & 366.6 & 788.58
\end{array}\right] \quad|\Delta|=7772.6 \\
& {\left[Z^{+}\right]=\left[\begin{array}{lll}
0.0729 & 0.0386 & 0.0557 \\
0.0386 & 0.0557 & 0.0472 \\
0.0557 & 0.0472 & 0.1015
\end{array}\right]}
\end{aligned}
$$

-ve seq. nehuabe.

The -ve deq. netwate will be same as that of the seq. neturde wikent any some. The ohesce is shasted and hence

$$
\left[z^{-}\right]=\left[z^{+}\right]
$$

Zew seq. nehunk :-

$$
\begin{aligned}
y^{0} & =\left[\begin{array}{ccc}
30 & -5 & -5 \\
-5 & 50 & -5 \\
-5 & -5 & 10
\end{array}\right] \\
\text { cofachr } & =\left[\begin{array}{lll}
475 & 75 & 275 \\
75 & 275 & 175 \\
275 & 175 & 1475
\end{array}\right]
\end{aligned}
$$

$$
\left[Z^{0}\right]=\left[\begin{array}{lll}
0.038 & 0.006 & 0.022 \\
0.006 & 0.022 & 0.014 \\
0.022 & 0.014 & 0.1180
\end{array}\right]^{|\Delta|=12500}
$$

The trunt count as tants bus (3) cen be colereted unj ers. (2)

$$
\left[\begin{array}{l}
I_{3}^{0} \\
I_{3}^{\prime} \\
I_{3}^{2}
\end{array}\right]=\frac{\sqrt{3}}{0.1180+0.1015+0.1015}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5.3959 \\
5.3959 \\
5.3959
\end{array}\right]
$$

The fawit hus withope (bons) can be calented unji eq: (1)

$$
\left[\begin{array}{l}
V_{3}^{0} \\
V_{3}^{\prime} \\
V_{3}^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
V_{3} \\
0
\end{array}\right]-\left[\begin{array}{l}
0.1180 \\
0.1015 \\
\\
0.1015
\end{array}\right]\left[\begin{array}{l}
5.3959 \\
5.3959 \\
5.3959
\end{array}\right]=\left[\begin{array}{l}
-0.6367 \\
1.1847 \\
-0.5477
\end{array}\right]
$$

The voltaps at allothen num can be celuted unic eq- (3)

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{1}^{0} \\
v_{1}^{\prime} \\
v_{1}^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{c}
0.022 \\
0.0557 \\
0.0557
\end{array}\right]\left[\begin{array}{l}
5.3959 \\
5.3959 \\
5.3959
\end{array}\right]=\left[\begin{array}{l}
-0.1187 \\
1.4315 \\
-0.3006
\end{array}\right]} \\
& {\left[\begin{array}{l}
v_{2}^{0} \\
v_{2}^{\prime} \\
v_{2}^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{c}
0.014 \\
0.0472 \\
0.0472
\end{array}\right]\left[\begin{array}{l}
5.3959 \\
5.3959 \\
5.3959
\end{array}\right]=\left[\begin{array}{l}
-0.0755 \\
1.4774 \\
-0.2547
\end{array}\right]}
\end{aligned}
$$

Convarian of sequence quantites into phan quantities.

$$
\begin{aligned}
& {\left[I_{3}{ }^{a}\right] \quad[1,1][5.3959] \quad[9.3459] \quad \| a^{2}=-0.5 j 0.846} \\
& {\left[\begin{array}{c}
I_{3}^{a} \\
I_{3}^{b} \\
I_{3}^{c}
\end{array}\right]=\frac{1}{V_{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
5.3959 \\
5.3959 \\
5.3959
\end{array}\right]=\left[\begin{array}{c}
9.3459 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-j 9.3459 \\
0 \\
0
\end{array}\right] .} \\
& V_{1}^{a b c}=\frac{1}{V_{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
-0.1187 \\
1.4315 \\
-0.3006
\end{array}\right]=\left[\begin{array}{l}
0.5844 \\
-0.395-j 0.866 \\
-0.395+j 0.866
\end{array}\right]=\left[\begin{array}{l}
0.5844 \angle 0^{\circ} \\
0.9518 \angle-114.52 \\
0.9518 \angle+114.82
\end{array}\right] \\
& V_{2}^{a b c}=\frac{1}{V_{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & 9 \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
-0.0755 \\
1.4774 \\
-0.2547
\end{array}\right]=\left[\begin{array}{l}
1.74772 \\
-0.3966-j 0.866 \\
-0.3966+j 0.866
\end{array}\right]=\left[\begin{array}{l}
1.1472 \angle 0^{\circ} \\
0.9524 \angle-114.6 \\
0.9525 \angle+114.6
\end{array}\right] \\
& V_{S}^{\text {abe }}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & 9 \\
1 & a^{2}
\end{array}\right]\left[\begin{array}{l}
-0.6367 \\
1.1844 \\
-0.5477
\end{array}\right]=\left[\begin{array}{l}
0.0 \\
-0.5514-j 0.828 \\
-0.5514+j 0.866
\end{array}\right]=\left[\begin{array}{l}
0.0 \\
1.0266<-122.5 \\
1.0266\lfloor 122.5
\end{array}\right]
\end{aligned}
$$

LL fruntt of for 3:-

$$
\begin{aligned}
& {\left[\underline{I}_{3}^{012}\right]=\frac{\sqrt{3}}{0.1015+0.1015}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0.0 \\
8.5323 \\
-8.5323
\end{array}\right] \rightarrow \text { rrits. }} \\
& {\left[\begin{array}{l}
V_{1}{ }^{012}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{c}
0.022 \\
0.0557 \\
0.0557
\end{array}\right]\left[\begin{array}{c}
0.0 \\
8.5323 \\
-8.5323
\end{array}\right]=\left[\begin{array}{c}
0.0 \\
1.2457 \\
0.4863
\end{array}\right] \begin{array}{l}
0.101021
\end{array}} \\
& {\left[\begin{array}{l}
V_{2}^{012}
\end{array}\right]=\left[\begin{array}{c}
0 \\
V_{3} \\
0
\end{array}\right]-\left[\begin{array}{cc}
0.014 & \\
0.0472 \\
& 0.0472
\end{array}\right]\left[\begin{array}{c}
0.0 \\
8.5323 \\
-8.5323
\end{array}\right]=\left[\begin{array}{c}
0.0 \\
1.3293 \\
0.4027
\end{array}\right] \text { dar.ing }} \\
& {\left[V_{3}^{012}\right]=\left[\begin{array}{c}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{c}
0.1180 \\
0.1015 \\
0.1015
\end{array}\right]\left[\begin{array}{c}
0.0 \\
8.5323 \\
-8.5321
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.8660 \\
0.8660
\end{array}\right] \text { gavinin }}
\end{aligned}
$$

Conessim its phan quantilis 1

$$
\begin{aligned}
& I_{3}^{a b c}=\left[T_{s}\right]\left[\begin{array}{c}
0 \\
8.5723 \\
-8.5323
\end{array}\right]=\left[\begin{array}{c}
0.0 \\
8.5323 \\
-8.5323
\end{array}\right]=\left[\begin{array}{c}
0.0 \\
-j 8.5323 \\
+j 8.5323
\end{array}\right] \\
& V_{1}^{\text {abc }}=\left[T_{S}\right]\left[\begin{array}{c}
0 \\
1.2457 \\
0.4863
\end{array}\right]=\left[\begin{array}{l}
1.0 \\
-0.5-j 0.3797 \\
-0.5+j 0.3799
\end{array}\right] \text { oritsin } \\
& V_{2}^{a b c}=\left[T_{5}\right]\left[\begin{array}{c}
0.0 \\
1.3293 \\
0.4027
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
-0.5-j 0.4633 \\
-0.5+j 0.4633
\end{array}\right]{ }_{0}{ }^{1 \mathrm{Wu}} \mathrm{Novi} \\
& V_{s}^{a b c}=\left[T_{s}\right]\left[\begin{array}{l}
0.0 \\
0.826 \\
0.866
\end{array}\right]=\left[\begin{array}{c}
1.0 \\
-0.5+j 0 \\
-0.5+j 0
\end{array}\right] \operatorname{sanhr}_{\text {aild }} \quad \mathrm{arm}^{2} .
\end{aligned}
$$

Short Circuit Studies by Matrix method:-

The repreoutation of the system with a fault at bros ' p ' is shaun in fig. In this epposentation, derived by mean os Thevenun's the rem, the internal impedance is repreouted bo the bus impedance matrix nicluding madinie reactance and the open cirmited voltage is repreousted by the bus voltage prier to the fault.

The performance equation os the toter during fault is

$$
\begin{equation*}
E_{\text {bm }}^{\text {abc }}(F)=E_{\text {ban }(0)}^{\text {abc }}-Z_{\text {bus }}^{\text {abc }} \cdot I_{\text {bus }}^{\text {abc }}(P) \quad 2 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{\text {bro }}^{\text {abe }}(F)=\left[\begin{array}{c}
E_{1}^{a b c}(f) \\
\vdots \\
E_{P}^{a b c}(F) \\
\vdots \\
E_{n}^{a b e}(F)
\end{array}\right]=\text { ans voltaps cumin faust } \\
& E_{\text {ban }}^{a b c}=\left[\begin{array}{c}
E_{1}^{a b c}(\theta) \\
\vdots \\
E_{p}^{a b c}(\theta) \\
\vdots a c c \\
E_{n}(0)
\end{array}\right]=\text { voltage vector prior to foul. }
\end{aligned}
$$

Expantinis eqn (1), we get

$$
\begin{gathered}
E_{1}^{a b c}(f)=E_{1}^{a b c}(0)-Z_{i p}^{a b c} \cdot I_{p}(f) \\
\vdots \\
\vdots a c c \\
E_{p}(p)=E_{p}(0)-Z_{p p}^{a b c} \cdot I_{p}(f) \\
\vdots \\
E_{n}^{a k c}(f)=E_{n}(\theta)-\frac{a c}{a b c} Z_{n p}^{a b c} \cdot I_{p}(f)
\end{gathered}
$$

The tault volkye accoress the fonslt implance cant be written as

$$
\begin{equation*}
E_{p}(f)=Z_{f}^{a b c} \cdot I_{p}(f) \tag{3}
\end{equation*}
$$

Equate eqn (3) with $p^{\text {th }}$ eryor (2). we pet

$$
\begin{array}{r}
Z_{f}^{a k} \cdot I_{p}(f)=E_{P}^{a b c}-Z_{P P}^{a k c} \cdot I_{p}(f) \\
I_{P}^{a b c}=\left(Z_{P p}^{a b c}+Z_{F}^{a b c}\right)^{-1} \cdot E_{p}^{a b c} \tag{24}
\end{array}
$$

Stepe:
The frutt bm cunt cante colcolated woni at (4). The foult bon volioge can be colcolated won it 3 The otten bon woltages can be colcolated wry ex (2)

Fault in admittanue form :- When it is desirathe to explen the frantt in admittance form, the denvee phane fauls count at bus p can be written as

$$
\begin{equation*}
I_{p}(f)=Y_{f}^{a b c} \cdot E_{p}^{a b c} \tag{5}
\end{equation*}
$$

Sub. (5) in $p^{\text {th }}$ equ or (2)

$$
\begin{align*}
& E_{p(p)}^{a b c}=E_{p(0)}^{a b c}-Z_{p p}^{a b c} \cdot Y_{f}^{a b c} \cdot E_{p(f)}^{a b c} \\
& E_{p}^{a b c}=(f)=\left(U+Z_{p p}^{a b c} \cdot Y_{f}^{a b c}\right)^{-1} \cdot E_{p(0)}^{a b c} .
\end{align*}
$$

Step: :-
The fault ton voltage can be calculated whis cqu (6) The fault bon cunts can be calculated wonis eqs (5) The othen bonvoltrys duming foult can be caloulated usin ers (2)

Transformation to symmetrical components:-
The formulas devaleped in the preceding sectson can be simpolied by uning symmetrical compments. The primitrue impedance mothox for a element is

$$
z_{p q}^{a b c}=\left[\begin{array}{lll}
z_{p 2}^{s} & z_{p 2}^{m} & z_{p z}^{m} \\
z_{p 2}^{m} & z_{p z}^{s} & z_{p 2}^{m} \\
z_{p 2}^{m} & z_{p 2}^{m} & z_{p 2}^{s}
\end{array}\right]
$$

The matax can be diagmalised iov the branformation $\left(T_{s}^{*}\right)^{t} z_{p t}^{\text {ase }} T_{S}$. into

The $p^{\text {th }}$ bus voltage poier to foult is
$E_{i(0)}^{a b c}=\left[\begin{array}{l}1 \\ a^{2} \\ a\end{array}\right] ; \quad$ Trantionumi ints Aymmetical compmonts, that in,

$$
\begin{aligned}
& E_{i(0)}^{0 / 2}=\left(T_{3}^{i}\right)^{t} E_{i(0)}^{a b c} \\
& E_{i(0)}^{0 / 2}=\left[\begin{array}{c}
0 \\
\sqrt{3} \\
0
\end{array}\right] .
\end{aligned}
$$

The fault impedance matrix $Z_{f}^{a b c}$ can be transtorncel by T_{s} into the matrix $Z_{f}{ }^{\alpha /}$. The reciting matrix is degoenal it the fault is balanced.

The equations (1)-(6) can be suitably modred by replacing the supersingts $a b c$ by 012 . The font impedance and admittance matrices in terms of terce phase and symmetrical components for various falls one green in Table.

$$
x_{2} \frac{1}{2}
$$

(3)

The fy. shows the one-live diagram is pacer span. Impednue dates are as follows.

For gen $G_{A} \times G_{B} ; \quad x_{1}=x_{2}=0.1 ; \quad x_{0}=0.04$ and $x_{g}=0.02$
For trantemes; $x_{1}=x_{2}=0.1 ; x_{0}=0.1$ and $x_{g}=0.05$
The 3ϕ reactance matrix for the lie is

$$
X_{\text {uni }}=b\left[\begin{array}{ccc}
a & b & c \\
c .3 & 0.1 & 0.1 \\
c .1 & 0.3 & 0.1 \\
0.1 & 0.1 & 0.3
\end{array}\right]
$$

The system is initially in balanced reeatem and may be considered to be unloaded. Find all the voltage and currents when a $\mathrm{L}-\mathrm{G}$ fault with fault impedance of jo.005 occurs at ens 2 .

Sol :

From the reactance matrix of the transminim lie, the sequence components can be computed as flews.

$$
\begin{aligned}
& x^{1}=x^{2}=x_{\text {self }}-x_{\text {mutual }}=0.3-0.1=0.2 \\
& x^{0}=x_{\text {self }}+2+x_{\text {mutual }}=0.3+(2 * 0.1)=0.5
\end{aligned}
$$

zero seq. netwone :.

$$
\begin{aligned}
0.1
\end{aligned}
$$

Fault admittance mahix

$$
\begin{aligned}
& z_{f} \sum_{\frac{1}{2}}^{0} \sum^{b} c \quad \frac{y_{f}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] ; \quad y_{F}=\frac{1}{z_{f}}=\frac{1}{0.005}=200.0 \\
& Y_{F}^{012}=\left[\begin{array}{lll}
66.667 & 66.667 & 66.667 \\
66.667 & 66.667 & 66.667 \\
66.667 & 66.667 & 66.667
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{p}^{0 / 2}(f)=\left(u+z_{p p}^{012} Y_{f}^{012}\right)^{-1} E_{p}^{0 / 2}(0) \mid p 1 \cdot \text { neta } \\
& I_{p}^{012}(f)=Y_{F}^{012} \cdot E_{p}^{012}(f) \\
& \text { Calculation of } U+Z_{p p}^{012} Y_{f}^{012} \\
& =\left[\begin{array}{lll}
1.0 & \\
& 1.0 \\
& 1.0
\end{array}\right]+\left[\begin{array}{lll}
0.1765 & & \\
& 0.12 \\
& 0.12
\end{array}\right]\left[\begin{array}{lll}
66.667 & 66667 & 66.667 \\
66.667 & 66.667 & 66.667 \\
66.667 & 66.667 & 66.667
\end{array}\right] \\
& =\left[\begin{array}{lll}
1.0 & & \\
& 1.0 & \\
& 1.0
\end{array}\right]+\left[\begin{array}{ccc}
12.7667 & 11.7667 & 11.7667 \\
8.0 & 8.0 & 8.0 \\
8.0 & 8.0 & 8.0
\end{array}\right]=\left[\begin{array}{ccc}
12.7667 & 11.7667 & 11.7667 \\
8.0 & 9.0 & 8.0 \\
8.0 & 8.0 & 9.0
\end{array}\right]
\end{aligned}
$$

Calculatan or $\left(U+z_{p p}^{012} y_{p}^{\text {O12 }}\right)^{-1}$.

$$
\begin{aligned}
& \text { cotachr } \left.=\left[\begin{array}{lll}
+(17) & -(8.0) & +(-8.0) \\
-(11.766) & +(20.7667) & -(8.0) \\
+(-11.7667) & -(8.0) & +(20.7667)
\end{array}\right] ; \mid \Delta\right]=28.7667 \\
& \left(U+z_{p p}^{012} Y_{p}^{012}\right)^{-1}=\left[\begin{array}{ccc}
* & -0.4090 & * \\
* & 0.7219 & * \\
* & -0.2781 & *
\end{array}\right] \\
& E_{2}^{012}(f)=\left[\begin{array}{lll}
* & -0.4090 & * \\
* & 0.7219 & * \\
* & -0.2781 & *
\end{array}\right]\left[\begin{array}{c}
0 \\
\sqrt{3} \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.7084 \\
1.2504 \\
-0.4817
\end{array}\right] \\
& I_{2}^{012}(f)=\left[\begin{array}{lll}
66.667 & 66.667 & 66667 \\
66.667 & 66.667 & 66.667 \\
66.667 & 66.667 & 66.667
\end{array}\right]\left[\begin{array}{c}
-0.7084 \\
1.2504 \\
-0.4817
\end{array}\right]=\left[\begin{array}{l}
4.0211 \\
4.0211 \\
4.0211
\end{array}\right]
\end{aligned}
$$

Using eq = (2)

$$
\begin{aligned}
& E_{1}^{0 / 2}(f)=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{lll}
0.0 & & \\
& 0.06 & \\
& & 0.06
\end{array}\right]\left[\begin{array}{l}
4.0211 \\
4.0211 \\
4.0211
\end{array}\right]=\left[\begin{array}{c}
0 \\
1.4908 \\
-0.2413
\end{array}\right] \\
& E_{3}^{012}(f)=\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right]-\left[\begin{array}{lll}
0.0294 & \\
& 0.04 & \\
& & 0.04
\end{array}\right]\left[\begin{array}{l}
4.0211 \\
4.0211 \\
4.0211
\end{array}\right]=\left[\begin{array}{l}
-0.1182 \\
1.5712 \\
-0.1608
\end{array}\right] .
\end{aligned}
$$

Calenlation $\%$ cements the' trunstimes (trom bres (1) to (2))

$$
I_{12}^{012}=\left[\begin{array}{l}
\frac{0-(-0.7087)}{0.25} \\
\frac{1.4908-1.2504}{0.1} \\
\frac{(-0.2413)-(-0.4817)}{0.1}
\end{array}\right]=\left[\begin{array}{l}
2.8336 \\
2.4040 \\
2.4040
\end{array}\right]
$$

FAULT IMPEDANCE AND ADMITTANCE MATRICES

Symetrical Three Phase to Ground Fault

Suppose the fault occurs at 'pith bus. If the fault is in admittance form, the fault description is given by

$$
\begin{equation*}
I_{F}=y_{f} V_{F} \tag{1}
\end{equation*}
$$

The pith port is terminated with the admittance $y f$. The constraints between the variables of the fault admittance and port variables are written as

$$
\left.\begin{array}{c}
I_{F}=-I_{P(F)} \quad V_{F}=V_{P(F)} \tag{2}\\
I_{i(F)}=0 ; \quad V_{i(F)}=\text { unknown } \\
\text { where } i=i, 2, \ldots n \\
i \neq p
\end{array}\right\}
$$

Where $I_{P(F)}$ and $V_{P(F)}$ are the port current and port voltage variables, under faulted condition.

$$
\begin{gather*}
V_{1}(F)=Z_{11} I_{1}(F)+\ldots+z_{1 p} I_{p}(F)+\ldots+z_{1 n} I_{n(F)}+V_{0}^{a} \\
V_{2}(F)=Z_{21} I_{1}(F)+\cdots+Z_{2 p} I_{p}(F)+\ldots+Z_{2 n} I_{n}(F)+V_{0}^{a} \\
\vdots \tag{3}\\
\vdots \\
V_{p}(F)=Z_{p 1} I_{1}(F)+\cdots+Z_{p p} I_{p}(F)+\ldots+Z_{p n} I_{n}(F)+V_{0}^{a} \\
\vdots \\
\vdots \\
V_{n}(F)=Z_{n 1} I_{1}(F)+\ldots+Z_{n p} I_{p}(F)+\ldots+Z_{n n} I_{n}(F)+V_{0}^{a}
\end{gather*}
$$

From $p^{\text {th }}$ equation in (3) and using relations (1) and (2) we can write

$$
\begin{equation*}
V_{P(F)}=-z_{P P} y_{F} V_{P(F)}+v_{0}^{a} \tag{4}
\end{equation*}
$$

Hence

$$
\begin{align*}
& v_{p}(F)=\left(1+z_{p P} y_{F}\right)^{-1} v_{0}^{a} \\
& I_{F}=y_{F}\left(1+z_{P P} y_{F}\right)^{-2} v_{0}^{a}
\end{align*}
$$

At other buses

$$
\begin{align*}
V_{i f} & =V_{0}^{a}+z_{i p} I_{p}(F) \\
& =V_{0}^{a}-z_{i p} I_{F} \\
& =V_{0}^{a}-z_{i p} y_{F}\left(1+z_{p p} y_{F}\right)^{-1} V_{0}^{a} \tag{7}
\end{align*}
$$

Thus all bus voltages (Unknown) are determined.
Symmetrical Three-phase fault -not involving ground
We have only the positive sequence admittance

$$
I_{F}=y_{F} V_{F}
$$

The results given by equations (5), (6) 2 (7) are applicable.

Fault analysis in Phase Impedance form
In three-phase form
$\left[V_{b u s, c}^{a, b, c}\right]=\left[Z_{b u c}^{a b c}\right]\left[I_{b u c}^{a b c}\right]+[B]\left[V_{0}^{a b c}\right]$

$$
\text { where }[B]=\left[\begin{array}{c}
U \tag{1}\\
\vdots \\
\vdots
\end{array}\right] \quad v_{0}^{a b c}=\left[\begin{array}{c}
v_{0}^{a} \\
v_{0}^{b} \\
v_{0}^{c}
\end{array}\right]
$$

Fault in admittance form

$$
\begin{equation*}
I_{f}^{a b c}=y_{F}^{a b c} V_{F}^{a b c} \tag{2}
\end{equation*}
$$

For a fault at $p^{\text {th }}$ bus the fault currents and voltages are

$$
\begin{align*}
& I_{F}^{a b c}=Y_{F}^{a b c}\left[U+Z_{P P}^{a b c} Y_{F}^{a b c}\right]^{-1} V_{0}^{a b c}-(3) \\
& I_{F}^{a b c}=-I_{P(F)}^{a b c} \tag{4}\\
& I_{i(F)}^{a b c}=0 \quad \text { for } \begin{array}{l}
i=1,2, \ldots n \\
i \neq P
\end{array}
\end{align*}
$$

$V_{i(f)}^{a b c}=V_{0}^{a b c}-Z_{i p}^{a b c} I_{f}^{a b c}$ for $i=1,2 \ldots n$ - (5)

$$
\begin{equation*}
V_{P}^{a b c}=[f)=\left[U+z_{P P}^{a b c} Y_{F}^{a b c}\right]^{-1} V_{0}^{a b c} \tag{5}
\end{equation*}
$$

For various types of unsymmetrical taults, the appropriate $Y_{F}^{a b c}$ is substituted in the above equation $Y_{F}^{a b c}$.

Fault Representation in Phase Quantities

In admittance form (3φ symmetrical fault)

$$
\begin{align*}
& {\left[\begin{array}{c}
I^{a} \\
I^{b} \\
I^{c}
\end{array}\right]=\frac{1}{y}\left[\begin{array}{ccc}
y_{a}\left(y_{a+}+y_{c}+y_{g}\right) & -y_{a} y_{b} & -y_{c} y_{c} \\
-y_{a} y_{b} & y_{b}\left(y_{a}+y_{c}+y_{g}\right) & -y_{b} y_{c} \\
-y_{a} y_{c} & -y_{b} y_{c} & \left.y_{c}\left(y_{a}+y_{b}\right) y_{g}\right)
\end{array}\right]\left[\begin{array}{l}
v_{a} \\
v^{b} \\
v c
\end{array}\right] } \\
& \text { i.e } \quad\left[\begin{array}{l}
I_{f}^{a b c}
\end{array}\right]=\left[\begin{array}{ll}
\left.y_{F}^{a b c}\right]\left[\begin{array}{l}
v_{F}^{a b c}
\end{array}\right] \\
y & =y_{a}+y_{b}+y_{c}+y_{g}
\end{array}\right. \tag{1}
\end{align*}
$$

Single Line to Ground Fault (La)

$$
y_{b}=y_{c}=0
$$

From (1)

$$
y_{F}^{a b c}=\left[\begin{array}{ccc}
\frac{y_{a} y_{g}}{y_{a+} y_{g}} & 0 & 0 \tag{2}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Line-Line to Ground Fault (LLA) $y_{a}=0$
From (1)

$$
y_{F}^{a b c}=\frac{1}{y}\left[\begin{array}{ccc}
0 & 0 & 0 \tag{3}\\
0 & y_{b}\left(y_{c}+y_{g}\right) & -y_{b} y_{c} \\
0 & -y_{b} y_{c} & y_{c}\left(y_{b}+y_{a}\right)
\end{array}\right]
$$

Line-Line Fault (LL) $\quad y_{a}=0 \quad y_{g}=0$

$$
Y_{F}^{a b c}=\frac{1}{y_{b}+y_{c}}\left[\begin{array}{ccc}
0 & 0 & 0 \tag{4}\\
0 & y_{b} y_{c} & -y_{b} y_{c} \\
0 & -y_{b} y_{c} & +y_{b} y_{c}
\end{array}\right]
$$

Three Phase Fault Unsymmetrical

$$
\begin{aligned}
& y_{g}=0 \\
& \therefore \quad y_{F}^{a b c}=\frac{1}{y}\left[\begin{array}{lll}
y_{a}\left(y_{b}+y_{c}\right) & -y_{b} y_{c} & -y_{a} y_{c} \\
-y_{a} y_{b} & y_{b}\left(y_{a}+y_{c}\right) & -y_{b} y_{c} \\
-y_{a} y_{c} &
\end{array}\right]
\end{aligned}
$$

Using equations (2) to (5) the fault currents and voltages for any unsymmetrical soult can be found out.

Expressions for voltages and currents under

Faulted condition - Symmetrical comp. Analysis

The voltages behind transient reactances are expressed as

$$
v^{s}=v_{0}^{012}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
v_{0}^{a} \\
v_{0}^{b} \\
v_{0}^{c}
\end{array}\right]
$$

For balanced excitation $v_{0}^{a}=\left|v_{a}\right|<0 \quad v_{0}^{b}=|\mathrm{va}|<-120^{\circ}$ and $v_{0}^{c}=|\mathrm{Va\mid}|-240^{\circ}$

Hence

$$
\left.v^{s}=v^{012}=\left[\begin{array}{c}
0 \\
\sqrt{3} \\
0
\end{array}\right] \right\rvert\, v_{a l}
$$

The tweet description in admittance form $Y_{F}^{0 / 2}$ tor various types of Sacelts are obtained by applying the symmetrical component
transformation to the corresponding $Y_{f} a b c$
The fault admittance matrices in the phase component form are summarized below.
(1) $3 \varnothing$ symmetrical fault

$$
\begin{aligned}
& \text { where } y_{1}=\frac{1}{3_{F}+3 z_{g}}
\end{aligned}
$$

(2) 3ϕ unsymmetrical Fault

$$
y=\left\{\begin{array}{ccc}
a & b & c \\
3 & \frac{1}{d}+\frac{1}{1} & \frac{1}{1} \\
y r
\end{array}\right.
$$

$$
y_{F}^{a b c}=\frac{y_{F}}{3}\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

i.e $y_{1}=0$ in the above case
(3) $\frac{L G}{a} \quad b \quad c$

$$
\because z g=\infty
$$

$y=\underline{\underline{1}}$

$$
Y_{F}^{a b c}=\left[\begin{array}{lll}
y_{F} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(4) LLG
$a \quad b \quad c$

$$
y_{f}^{a b c}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{z_{F}+z_{g}}{z_{f}^{2}+2 z_{f} z_{g}} & \frac{-z_{g}}{z_{p}^{2}+2 z_{f} z_{g}} \\
0 & \frac{-z_{g}}{z_{f}^{2}+2 z_{F} z_{g}} & \frac{z_{f}+z_{g}}{z_{f}^{2}+2 z_{f} z_{g}}
\end{array}\right]
$$

(5) LL

$$
\begin{array}{ccc}
a & b & y_{F}^{a b c}= \\
y_{F} b & \frac{1}{3} y_{F}
\end{array} \quad y_{F}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

For LG Fault
By symmetrical component transformation

$$
\begin{aligned}
V_{F}^{012} & =\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{lll}
y_{F} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
\frac{1}{\sqrt{3}} & a^{2} & a \\
a & a^{2}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{lll}
y_{F} & y_{F} & y_{F} \\
y_{F} & y_{F} & y_{F} \\
y_{F} & y_{F} & y_{F}
\end{array}\right] \\
& =\frac{y_{F}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

For LG Fault
By symmetrical component transformation

$$
V_{F}^{012}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{ccc}
y_{F} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{\sqrt{3}} & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& =\frac{1}{3}\left[\begin{array}{lll}
y_{F} & y_{F} & y_{F} \\
y_{F} & y_{F} & y_{F} \\
y_{F} & y_{F} & y_{F}
\end{array}\right] \\
& =\frac{y_{F}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& I_{F}^{012}=y_{F}^{012}\left[U+z_{F}^{012} y_{F}^{012}\right]^{-1} V_{0}^{012} \\
& =\frac{y_{F}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
z_{\rho \rho}^{(0)} & 0 & 0 \\
0 & z_{r}^{012} \\
0 & 0 & 0 \\
-1 & z_{p p}^{(1)}
\end{array}\right] \times\right. \\
& \left.\times \frac{y_{f}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]^{y_{f}^{012}}\left[\begin{array}{c}
0 \\
\sqrt{3} \\
0
\end{array}\right] \right\rvert\, \mathrm{val}
\end{aligned}
$$

Simplitying the above

$$
\begin{aligned}
I_{F}^{012} & =\frac{y_{F}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left\{\left[\begin{array}{ccc}
1+z_{p \rho}^{(0)} \frac{y_{F}}{3} & z_{p \rho}^{(0)} \frac{y_{F}}{3} & z_{p \rho}^{0} \frac{y_{F}}{3} \\
z_{p \rho}^{(1)} \frac{y_{F}}{3} & 1+z_{p p}^{(1)} \frac{y_{k}}{3} & z_{p \rho}^{(0)} \frac{y_{F}}{3} \\
z_{\rho \rho}^{(2)} \frac{y_{F}}{3} & z_{d \rho}^{(2)} \frac{y_{F}}{3} & 1+z_{p p}^{(2)} \frac{y_{F}}{3}
\end{array}\right]^{-9}\right\}\left[\begin{array}{l}
0 \\
\sqrt{3} \\
0
\end{array}\right] V_{a)} \\
& =\frac{\sqrt{3}}{z_{p \rho}^{(0)}+3 z_{F}+z_{p \rho}^{(1)}+z_{p \rho}^{(2)}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left|V_{a}\right|
\end{aligned}
$$

Similarly for syminetrical 3ϕ fault

$$
\begin{aligned}
y_{F}^{012} & =\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[y_{F}^{a b c}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
y_{0} & 0 & 0 \\
0 & y_{F} & 0 \\
0 & 0 & y_{F}
\end{array}\right] \quad \text { where } \quad y_{0}=\frac{1}{z_{F}+3 z_{g}}
\end{aligned}
$$

For 3ϕ fault without ground

$$
y_{F}^{012}=y_{F}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \because z_{g}=\infty
$$

in the above expression

For LG Fault

$$
y_{F}^{012}=\frac{y_{F}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

For LLG

$$
y_{f}^{012}=\frac{1}{3\left(z_{k}^{2}+2 z_{f} z_{g}\right)}\left[\begin{array}{ccc}
2 z_{F} & -z_{F} & -z_{F} \\
-z_{F} & 2 z_{F}+3 z_{g} & -\left(z_{F}+3 z_{g}\right) \\
-z_{F} & \left(3_{f}+3 z_{g}\right) & 2 z_{f}+3 z_{g}
\end{array}\right]
$$

For LL

$$
y_{F}^{012}=\frac{y_{F}}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

[^0]: sill inill")

